10.12 Some proofs

10.12.1 Lengths and reconstruction

Theorem 10.13. Let V be a vector space over a field \mathbb{F} and let $\langle\rangle:, V \times V \rightarrow \mathbb{F}$ be a bilinear form. Let $\left\|\|^{2}: V \rightarrow \mathbb{F}\right.$ be the quadratic form associated to \langle,$\rangle .$
(a) (Parallelogram property) If $x, y \in V$ then

$$
\|x+y\|^{2}+\|x-y\|^{2}=2\|x\|^{2}+2\|y\|^{2}
$$

(b) (Pythagorean theorem) If $x, y \in V$ and $\langle x, y\rangle=0$ and $\langle y, x\rangle=0$ then

$$
\|x\|^{2}+\|y\|^{2}=\|x+y\|^{2}
$$

(c) (Reconstruction) Assume that \langle,$\rangle is symmetric and that 2 \neq 0$ in \mathbb{F}. Let $x, y \in V$. Then

$$
\langle x, y\rangle=\frac{1}{2}\left(\|x+y\|^{2}-\|x\|^{2}-\|y\|^{2}\right)
$$

Proof.
(a) Assume $x, y \in V$. Then

$$
\begin{aligned}
\|x+y\|^{2}+\|x-y\|^{2} & =\langle x+y, x+y\rangle+\langle x-y, x-y\rangle \\
& =\langle x, x\rangle+\langle x, y\rangle+\langle y, x\rangle+\langle y, y\rangle+\langle x, x\rangle-\langle x, y\rangle-\langle y, x\rangle+\langle y, y\rangle \\
& =2\|x\|^{2}+2\|y\|^{2}
\end{aligned}
$$

(b) Assume $x, y \in V$ and $\langle x, y\rangle=0$ and $\langle y, x\rangle=0$. Then

$$
\begin{aligned}
\|x+y\|^{2} & =\langle x+y,+x+y\rangle=\langle x, x\rangle+\langle x, y\rangle+\langle y, x\rangle+\langle y, y\rangle \\
& =\|x\|^{2}+0+0+\|y\|^{2}=\|x\|^{2}+0+0+\|y\|^{2}
\end{aligned}
$$

(c) Assume $x, y \in V$. Then

$$
\begin{aligned}
\|x+y\|^{2}-\|x\|^{2}-\|y\|^{2} & =\langle x+y, x+y\rangle-\langle x, x\rangle-\langle y, y\rangle \\
& =\langle x, x\rangle+\langle x, y\rangle+\langle y, x\rangle+\langle y, y\rangle-\langle x, x\rangle-\langle y, y\rangle \\
& =2\langle x, y\rangle
\end{aligned}
$$

10.12.2 Cauchy-Schwarz

Theorem 10.14. Let \mathbb{F} be a field with an involution $-\mathbb{F} \rightarrow \mathbb{F}$ such that the fixed field

$$
\mathbb{K}=\{a \in \mathbb{F} \mid a=\bar{a}\} \quad \text { is an ordered field. }
$$

For $a \in \mathbb{K}$ define

$$
|a|^{2}=a \bar{a}
$$

Let V be an \mathbb{K}-vector space with a sesquilinear form $\langle\rangle:, V \times V \rightarrow \mathbb{F}$ such that
(a) If $x, y \in V$ then $\langle y, x\rangle=\overline{\langle x, y\rangle}$.
(b) If $x \in V$ then $\langle x, x\rangle \in \mathbb{K}_{\geq 0}$.

Let $\left\|\|: V \rightarrow \mathbb{F}\right.$ be the corresponding quadratic form and assume that if $a \in \mathbb{K}_{\geq 0}$ then there exists a unique $c \in \mathbb{K}_{\geq 0}$ such that $c^{2}=a$. Then
(c) (Cauchy-Schwarz) If $x, y \in V$ then $|\langle x, y\rangle| \leq\|x\| \cdot\|y\|$.
(d) (Triangle inequality) If $x, y \in V$ then $\|x+y\| \leq\|x\|+\|y\|$.

Proof. (c) Let $x, y \in V$. If $x=0$ then both sides of the Cauchy-Schwarz inequality are 0 . Assume $x \neq 0$. The Gram-Schmidt process on the vectors (x, y) suggests the consideration of

$$
u_{1}=\frac{x}{\|x\|} \quad \text { and } \quad u_{2}=y-\frac{\langle y, x\rangle}{\langle x, x\rangle} x
$$

To avoid denominators, let $u=\langle x, x\rangle y-\langle y, x\rangle x$. Then

$$
\begin{aligned}
0 & \leq\langle u, u\rangle=\langle\langle x, x\rangle y-\langle y, x\rangle x,\langle x, x\rangle y-\langle y, x\rangle x\rangle \\
& =\overline{\langle x, x\rangle}\langle x, x\rangle\left|\langle y, y\rangle-\langle x, x\rangle \overline{\langle y, x\rangle}\langle y, x\rangle-\langle y, x\rangle \overline{\langle x, x\rangle}\langle x, y\rangle+|\langle y, x\rangle|^{2}\langle x, x\rangle\right. \\
& =\overline{\langle x, x\rangle}\left(\langle x, x\rangle\langle y, y\rangle-|\langle y, x\rangle|^{2}\right)
\end{aligned}
$$

Since $x \neq 0$ then $\langle x, x\rangle \in \mathbb{K}_{>0}$ and so $\overline{\langle x, x\rangle}=\langle x, x\rangle \in \mathbb{K}_{>0}$. Thus,

$$
0 \leq\langle x, x\rangle\langle y, y\rangle-|\langle y, x\rangle|^{2} \quad \text { and so } \quad|\langle y, x\rangle|^{2} \leq\langle x, x\rangle\langle y, y\rangle
$$

Thus, BY SQUARES PROPOSITION, $|\langle x, y\rangle| \leq\|x\| \cdot\|y\|$.
(d) Let $a \in \mathbb{F}$. Using that if $z \in \mathbb{F}$ then $|z|^{2}=z \bar{z} \in \mathbb{K}_{\geq 0}$, then

$$
|a+\bar{a}|^{2} \leq|a+\bar{a}|^{2}+|a-\bar{a}|^{2}=(a+\bar{a})^{2}-(a-\bar{a})^{2}=4 a \bar{a}=4|a|^{2}
$$

So $|a+\bar{a}| \leq 2|a|$. Also
if $a+\bar{a} \in \mathbb{K}_{\leq 0}$ then $a+\bar{a} \leq 0 \leq|a+\bar{a}| \quad$ and \quad if $a+\bar{a} \in \mathbb{K}_{\geq 0}$ then $a+\bar{a}=|a+\bar{a}|$.
Combining these with $|a+\bar{a}| \leq 2|a|$ gives

$$
a+\bar{a} \leq 2|a|
$$

Assume $x, y \in V$. Then

$$
\begin{aligned}
\|x+y\|^{2} & =\langle x, x\rangle+\langle x, y\rangle+\langle y, x\rangle+\langle y, y\rangle \\
& =\|x\|^{2}+\mid y \|^{2}+\langle x, y\rangle+\overline{\langle x, y\rangle} \\
& \leq\|x\|^{2}+\left|y \|^{2}+2\right|\langle x, y\rangle \mid \\
& \leq\|x\|^{2}+\left|y\left\|^{2}+2\right\| x\right| \cdot\|y\| \\
& =(\|x\|+\|y\|)^{2} .
\end{aligned}
$$

Thus $\|x+y\| \leq\|x\|+\|y\|$.

10.12.3 Dual basies

Proposition 10.15. Let V be a vector space with a sesquilinear form $\langle\rangle:, V \times V \rightarrow \mathbb{F}$. Let $W \subseteq V$ be a subspace of V. Assume W is finite dimensional, that $\left(w_{1}, \ldots, w_{k}\right)$ is a basis of W and that G is the Gram matrix of \langle,$\rangle with respect to the basis \left\{w_{1}, \ldots, w_{k}\right\}$. The following are equivalent:
(a) A dual basis to $\left(w_{1}, \ldots, w_{k}\right)$ exists.
(b) G is invertible.
(c) $W \cap W^{\perp}=0$.
(d) The linear transformation

$$
\begin{aligned}
\Psi_{W}: \quad W & \rightarrow W^{*} \\
v & \longmapsto \varphi_{v} \quad \text { given by } \quad \varphi_{v}(w)=\langle v, w\rangle
\end{aligned}
$$

is an isomorphism.
Proof.
$(\mathrm{a}) \Rightarrow(\mathrm{b})$: Assume that $\left\{w^{1}, \ldots, w^{k}\right\}$ exists.
To show: G is invertible.
Define $H(\ell, i) \in \mathbb{F}$ by

$$
w^{i}=\sum_{\ell=1}^{k} H(i, \ell) w_{\ell}
$$

Then

$$
\delta_{i j}=\left\langle w^{i}, w_{j}\right\rangle=\sum_{\ell=1}^{k} H(i, \ell)\left\langle w_{\ell}, w_{j}\right\rangle=\sum_{\ell=1}^{k} H(i, \ell) G(\ell, j)=(H G)(i, j)
$$

So $H G=1, H$ is the inverse of G, and G is invertible.
$(\mathrm{b}) \Rightarrow(\mathrm{a})$: Assume that G is invertible.
For $i \in\{1, \ldots, k\}$ define

$$
w^{i}=\sum_{\ell=1}^{k} G^{-1}(i, \ell) w_{\ell}, \quad \text { for } i \in\{1, \ldots, k\}
$$

Then

$$
\left\langle w^{i}, w_{j}\right\rangle=\sum_{\ell=1}^{k} G^{-1}(i, \ell)\left\langle w_{\ell}, w_{j}\right\rangle=\sum_{\ell=1}^{k} G^{-1}(i, \ell) G(\ell, j)=\left(G^{-1} G\right)(i, j)=\delta_{i j}
$$

So $\left\{w^{1}, \ldots, w^{k}\right\}$ is a dual basis to $\left\{w_{1}, \ldots, w_{k}\right\}$.
$(\mathrm{b}) \Rightarrow(\mathrm{c})$: Assume that G is invertible.
To show: $W \cap W^{\perp}=0$.
Let $w \in W \cap W^{\perp}$.
To show: $w=0$.
Write $w=c_{1} w_{1}+\cdots+c_{k} w_{k}$.
To show: If $j \in\{1, \ldots, k\}$ then $c_{j}=0$.
Since $w \in W^{\perp}$ then $\left\langle w, w_{r}\right\rangle=0$ for $r \in\{1, \ldots, k\}$ and

$$
\begin{aligned}
c_{j} & =\sum_{\ell=1}^{n} c_{\ell} \delta_{\ell j}=\sum_{\ell=1}^{n} c_{\ell} G(\ell, r) G^{-1}(r, j) \\
& =\sum_{\ell=1}^{k} c_{\ell}\left\langle w_{\ell}, w_{r}\right\rangle G^{-1}(r, j)=\sum_{r=1}^{k}\left\langle w, w_{r}\right\rangle G^{-1}(r, j)=0 .=\sum_{r=1}^{k} 0 \cdot G^{-1}(r, j)=0
\end{aligned}
$$

So $w=0$.
(c) $\Rightarrow(\mathrm{b})$: Assume that $W \cap W^{\perp}=0$.

To show: G is invertible.
To show: The rows of G are linearly independent.
To show: If $c_{1}, \ldots, c_{k} \in \mathbb{F}$ and $\left(c_{1}, \ldots, c_{k}\right) G=0$ then $c_{1}=0, c_{2}=0, \ldots, c_{k}=0$.
Assume $c_{1}, \ldots, c_{k} \in \mathbb{F}$ and $\left(c_{1}, \ldots, c_{k}\right) G=0$.
To show: $c_{1}=0, c_{2}=0, \ldots, c_{k}=0$.
Let $w=c_{1} w_{1}+\cdots+c_{k} w_{k}$.
If $i \in\{1, \ldots, k\}$ then, since $\left(c_{1}, \ldots, c_{k}\right) G=0$,

$$
0=\sum_{\ell=1}^{k} c_{\ell} G(\ell, i)=\sum_{\ell=1}^{k} c_{k}\left\langle w_{\ell}, w_{i}\right\rangle=\left\langle c_{1} w_{1}+\cdots c_{k} w_{k}, w_{i}\right\rangle=\left\langle w, w_{i}\right\rangle
$$

So $w \in W^{\perp}$.
So $w \in W \cap W^{\perp}$.
So $w=0$.
So $c_{1}=0, c_{2}=0, \ldots, c_{k}=0$.
Thus the rows of G are linearly independent and G is invertible.
(c) $\Rightarrow(\mathrm{d})$: Assume that $W \cap W^{\perp}=0$

To show: $\Psi_{W}: W \rightarrow W^{*}$ is an isomorphism.
To show: (ca) Ψ_{W} is injective.
(cb) Ψ_{W} is surjective.
(ca) Since $\operatorname{ker}\left(\Psi_{W}\right)=W \cap W^{\perp}$ then $\operatorname{ker}\left(\Psi_{W}\right)=0$.
So Ψ_{W} is injective.
(cb) If $\left\{w_{1}, \ldots, w_{k}\right\}$ is a basis of W then defining $\varphi^{i}: W \rightarrow \mathbb{F}$ by

$$
\text { if } c_{1}, \ldots, c_{k} \in \mathbb{F} \text { then } \quad \varphi^{i}\left(c_{1} w_{1}+\cdots+c_{k} w_{k}\right)=c_{i}
$$

produces a basis $\left\{\varphi^{1}, \ldots, \varphi^{k}\right\}$ of the dual space W^{*}.
So $\operatorname{dim}(W)=\operatorname{dim}\left(W^{*}\right)$.
Since Ψ_{W} is injective W is finite dimensional then $\operatorname{dim}\left(\operatorname{im}\left(\Psi_{W}\right)\right)=\operatorname{dim}(W)=\operatorname{dim}\left(W^{*}\right)$.
So $\operatorname{im}\left(\Psi_{W}\right)=W^{*}$ and ψ_{W} is surjective.
So Ψ_{W} is an isomorphism.
(d) \Rightarrow (c): Assume that Ψ_{W} is an isomorphism.

So Ψ_{W} is injective.
So $\operatorname{ker}\left(\Psi_{W}\right)=0$.
Since $\operatorname{ker}\left(\Psi_{W}\right)=W \cap W^{\perp}$ then $W \cap W^{\perp}=0$.

10.12.4 Nonisotropy

Proposition 10.16. A sesquilinear form $\langle\rangle:, V \times V \rightarrow \mathbb{F}$ satisfies
(no isotropic vectors condition) If $v \in V$ and $\langle v, v\rangle=0$ then $v=0$.

if and only if it satisfies

(no isotropic subspaces condition) If W is a subspace of V then $W \cap W^{\perp}=0$.

Proof. \Rightarrow : Assume that if $v \in V$ and $\langle v, v\rangle=0$ then $v=0$.
To show: If W is a subspace of V then $W \cap W^{\perp}=0$.
Assume W is a subspace of V.
To show: If $w \in W \cap W^{\perp}$ then $w=0$.
Assume $w \in W \cap W^{\perp}$.
Then $\langle w, w\rangle=0$.
So $w=0$.
\Leftarrow : Assume that if W is a subspace of V then $W \cap W^{\perp}=0$.
To show: If $v \in V$ and $\langle v, v\rangle=0$ then $v=0$.
Assume $v \in V$.
To show: If $v \neq 0$ then $\langle v, v\rangle \neq 0$.
Assume $v \neq 0$.
Let $W=\mathbb{F} v$, a one-dimensional subspace of V.
Since $\mathbb{F} v \cap(\mathbb{F} v)^{\perp}=0$ then $v \notin(\mathbb{F} v)^{\perp}$.
So $\langle v, v\rangle \neq 0$.

10.12.5 Orthogonal projections

Proposition 10.17. (Characterization of orthogonal projection) Let \mathbb{F} be a field and let V be an \mathbb{F}-vector space. Let $\langle\rangle:, V \times V \rightarrow \mathbb{F}$ be a sesquilinear form. Let $k \in \mathbb{Z}_{>0}$ and let W be a subspace of V such that $\operatorname{dim}(W)=k$ and $W \cap W^{\perp}=0$. The orthogonal projection onto W is the unique linear transformation $P: V \rightarrow V$ such that
(1) If $v \in V$ then $P(v) \in W$.
(2) If $v \in V$ and $w \in W$ then $\langle v, w\rangle=\langle P(v), w\rangle$.

Proof. Let $\left(w_{1}, \ldots, w_{k}\right)$ be a basis of W and let $\left(w^{1}, \ldots, w^{k}\right)$ be the dual basis of W. The orthogonal projection onto W is the function

$$
P_{W}: V \rightarrow V \quad \text { given by } \quad P_{W}(v)=\sum_{i=1}^{k}\left\langle v, w_{i}\right\rangle w^{i}
$$

To show: (a) P_{W} is a linear transformation that satisfies conditions (1) and (2).
(b) If Q is a linear transformation that satisfies (1) and (2) then $Q=P_{W}$.
(a) To show: (0) P_{W} is a linear transformation.
(1) If $v \in V$ then $P(v) \in W$.
(2) If $v \in V$ and $w \in W$ then $\langle v, w\rangle=\langle P(v), w\rangle$.
(0) To show: If $c \in \mathbb{F}$ and $v, v_{1}, v_{2} \in V$ then $P_{W}(c v)=c P_{W}(v)$ and $P_{W}\left(v_{1}+v_{2}\right)=P_{W}\left(v_{1}\right)+$ $P_{W}\left(v_{2}\right)$.
Assume $c \in \mathbb{F}$ and $v, v_{1}, v_{2} \in V$.
To show: $P_{W}(c v)=c P_{W}(v)$ and $P_{W}\left(v_{1}+v_{2}\right)=P_{W}\left(v_{1}\right)+P_{W}\left(v_{2}\right)$.
Since \langle,$\rangle ls linear in the first coordinate then$

$$
\begin{aligned}
& P_{W}(c v)=\sum_{i=1}^{k}\left\langle c v, w_{i}\right\rangle w^{i}=\sum_{i=1}^{k} c\left\langle v, w_{i}\right\rangle w^{i}=c\left(\sum_{i=1}^{k}\left\langle v, w_{i}\right\rangle w^{i}\right)=c P_{W}(v), \quad \text { and } \\
& P_{W}(c v)=\sum_{i=1}^{k}\left\langle v_{1}+v_{2}, w_{i}\right\rangle w^{i}=\sum_{i=1}^{k} c\left\langle v_{1}, w_{i}\right\rangle w^{i}+\sum_{i=1}^{k} c\left\langle v_{1}, w_{i}\right\rangle w^{i}=P W\left(v_{1}\right)+P_{W}\left(v_{2}\right)
\end{aligned}
$$

So P_{W} is a linear transformation.
(1) Assume $v \in V$.

Since $w^{1}, \ldots, w^{k} \in W$ and $P_{W}(v)=\sum_{i=1}^{k}\left\langle v, w_{i}\right\rangle w^{i}$ then $P_{W}(v) \in W$.
(2) Assume $v \in V$ and $w \in W$.

Since $\left\{w_{1}, \ldots, w_{k}\right\}$ is a basis of W then there exist $c_{1}, \ldots, c_{k} \in \mathbb{F}$ such that $w=c_{1} w_{1}+$ $\cdots+c_{k} w_{k}$.
Then

$$
\left\langle P_{W}(v), w\right\rangle=\left\langle\sum_{i=1}^{k}\left\langle v, w_{i}\right\rangle w^{i}, \sum_{j=1}^{k} c_{j} w_{j}\right\rangle=\sum_{i=1}^{k} \bar{c}\left\langle v, w_{i}\right\rangle=\langle v, w\rangle .
$$

Thus $P_{W}(v)$ is a linear transformation that satisfies (1) and (2).
(b) Assume $Q: V \rightarrow V$ is a linear transformation that satisfies (1) and (2).

To show: $Q=P_{W}$.
To show: If $v \in V$ then $Q(v)=P_{W}(v)$.
Assume $v \in V$.
Since Q satisfies property (2), if $w \in W$ then $\langle Q(v), w\rangle=\langle v, w\rangle$.
So $\langle Q(v), w\rangle=\langle v, w\rangle=\left\langle P_{W}(v), w\right\rangle$.
So, if $w \in W$ then $\left\langle P_{W}(v)-Q(v), w\right\rangle=0$.
So $P_{W}(v)-Q(v) \in W^{\perp}$.
By Property (1), $P_{W}(v)-Q(v) \in W$.
So $P_{W}(v)-Q(v) \in W \cap W^{\perp}$.
Since $W \cap W^{\perp}=0$ then $P_{W}(v)-Q(v)=0$.
So $P_{W}=Q$.

10.12.6 Orthogonal decompositions

Theorem 10.18. Let $n \in \mathbb{Z}_{>0}$ and let V be an inner product space with $\operatorname{dim}(V)=n$. Let W be a subspace of V such that $W \cap W^{\perp}=0$. Let P_{W} be the orthogonal projection onto W and let $P_{W^{\perp}}=1-P_{W}$. Then

$$
\begin{gathered}
P_{W}^{2}=P_{W}, \quad P_{W^{\perp}}^{2}=P_{W^{\perp}}, \quad P_{W} P_{W^{\perp}}=P_{W^{\perp}} P_{W}=0, \quad 1=P_{W}+P_{W^{\perp}}, \\
\operatorname{ker}\left(P_{W}\right)=W^{\perp}, \quad \operatorname{im}\left(P_{W}\right)=W \quad \text { and } \quad V=W \oplus W^{\perp} .
\end{gathered}
$$

Proof. (a) Assume $v \in V$. Then, by properties (1) and (2) of Proposition 16.6,

$$
P_{W}^{2}(v)=\sum_{i=1}^{k}\left\langle P_{W}(v), w^{i}\right\rangle w_{i}=\sum_{i=1}^{k}\left\langle v, w^{i}\right\rangle w_{i}=P_{W}(v) . \quad \text { So } P_{W}^{2}=P_{W} .
$$

(b) Since $P_{W}^{2}=P_{W}$ then

$$
P_{W^{\perp}}^{2}=\left(1-P_{W}\right)^{2}=1-2 P_{W}+P_{W}^{2}=1-2 P_{W}+P_{W}=1-P_{W}=P_{W^{\perp}} .
$$

(c) Since $P_{W}^{2}=P_{W}$ and $P_{W^{\perp}}=1-P_{W}$ then

$$
\begin{aligned}
& P_{W} P_{W^{\perp}}=P_{W}\left(1-P_{W}\right)=P_{W}-P_{W}^{2}=P_{W}-P_{W}=0 \quad \text { and } \\
& P_{W^{\perp}} P_{W}=\left(1-P_{W}\right) P_{W}=P_{W}-P_{W}^{2}=P_{W}-P_{W}=0 .
\end{aligned}
$$

(d) Since $P_{W^{\perp}}=1-P_{W}$ then $P_{W}+P_{W^{\perp}}=P_{W}+\left(1-P_{W}\right)=1$.
(e) To show $\operatorname{ker}\left(P_{W}\right)=W^{\perp}$.

To show: (ea) $\operatorname{ker}\left(P_{W}\right) \subseteq W^{\perp}$.
(eb) $W^{\perp} \subseteq \operatorname{ker}\left(P_{W}\right)$.
(ea) Assume $v \in \operatorname{ker}\left(P_{W}\right)$.
By property (2) in Proposition 16.6, $\langle v, w\rangle=\left\langle P_{W}(v), w\right\rangle=\langle 0, w\rangle=0$.
So $v \in W^{\perp}$.
So $\operatorname{ker}\left(P_{W}\right) \subseteq W^{\perp}$.
(eb) Assume $v \in W^{\perp}$.
If $w \in W$ then $\left\langle P_{W}(v), w\right\rangle=\langle v, w\rangle=0$ and so $P_{W}(v) \in W^{\perp}$.
By property (1), $P_{W}(v) \in W$ and so $P_{W}(v) \in W \cap W^{\perp}=0$.
So $v \in \operatorname{ker}\left(P_{W}\right)$.
So $W^{\perp} \subseteq \operatorname{ker}\left(P_{W}\right)$.
So $\operatorname{ker}\left(P_{W}\right)=W^{\perp}$.
(f) To show: $\operatorname{im}\left(P_{W}\right)=W$.

To show: (fa) $\operatorname{im}\left(P_{W}\right) \subseteq W$.
(fb) $W \subseteq \operatorname{im}\left(P_{W}\right)$.
(fa) By property (1) of Proposition 16.6, im $\left(P_{W}\right) \subseteq W$.
(fb) Assume $w \in W$.
Let $c_{1}, \ldots, c_{k} \in \mathbb{F}$ such that $w=c_{1} w^{1}+\cdots+c_{k} w^{k}$.
Since $\left\langle w^{i}, w_{j}\right\rangle=\delta_{i j}$ then

$$
P_{W}(w)=\sum_{i=1}^{k}\left\langle w, w_{i}\right\rangle w^{i}=\sum_{i=1}^{k} \sum_{j=1}^{k}\left\langle c_{j} w^{j}, w_{i}\right\rangle w^{i}=\sum_{j=1}^{k} c_{j} w^{i}=w .
$$

So $W \subseteq \operatorname{im}\left(P_{W}\right)$.
So $\operatorname{im}\left(P_{W}\right)=W$.
(g) If $v \in V$ then $v=P_{W}(v)+\left(1-P_{W}\right)(v) \in W+W^{\perp}$.

So $V=W+W^{\perp}$.
By assumption $W \cap W^{\perp}=0$, and so $V=W \oplus W^{\perp}$.

10.12.7 Orthonormal sequences are linearly independent

Proposition 10.19. Let V be an \mathbb{F}-vector space with a Hermitian form. An orthonormal sequence $\left(a_{1}, a_{2}, \ldots\right)$ in V is linearly independent.

Proof. Let $\left(a_{1}, a_{2}, \ldots\right)$ be an orthonormal sequence in V.
To show: $\left\{a_{1}, a_{2}, \ldots\right\}$ is linearly independent.
To show: If $\ell \in \mathbb{Z}_{>0}$ and $\mu_{1} a_{1}+\mu_{2} a_{2}+\cdots+\mu_{\ell} a_{\ell}=0$ then $\mu_{j}=0$ for $j \in\{1,2, \ldots, \ell\}$.
Assume $\ell \in \mathbb{Z}_{>0}$ and $\mu_{1} a_{1}+\mu_{2} a_{2}+\cdots+\mu_{\ell} a_{\ell}=0$.
To show: If $j \in\{1, \ldots, \ell\}$ then $\mu_{j}=0$.
Assume $j \in\{1, \ldots, \ell\}$.
Then $0=\left\langle\mu_{1} a_{1}+\mu_{2} a_{2}+\cdots+\mu_{\ell} a_{\ell}, a_{j}\right\rangle=\mu_{j}\left\langle a_{j}, a_{j}\right\rangle=\mu_{j}$.
So $\left\{a_{1}, a_{2}, \ldots\right\}$ is linearly independent.

10.12.8 Gram-Schmidt

Theorem 10.20. (Gram-Schmidt) Let V be an \mathbb{F}-vector space with a sesquilinear form $\langle\rangle:, V \times V \rightarrow$ \mathbb{F}. Assume that \langle,$\rangle is nonisotropic and that \langle$,$\rangle is Hermitian i.e.,$
(1) (Nonisotropy condition) If $v \in V$ and $\langle v, v\rangle=0$ then $v=0$, and
(2) (Hermitian condition) If $v_{1}, v_{2} \in V$ then $\left\langle v_{2}, v_{1}\right\rangle=\overline{\left\langle v_{1}, v_{2}\right\rangle}$.

Let p_{1}, p_{2}, \ldots be a sequence of linear independent elements of V.
(a) Define $b_{1}=p_{1}$ and

$$
b_{n+1}=p_{n+1}-\frac{\left\langle p_{n+1}, b_{1}\right\rangle}{\left\langle b_{1}, b_{1}\right\rangle} b_{1}-\cdots-\frac{\left\langle p_{n+1}, b_{n}\right\rangle}{\left\langle b_{n}, b_{n}\right\rangle} b_{n}, \quad \text { for } n \in \mathbb{Z}_{>0}
$$

Then $\left(b_{1}, b_{2}, \ldots\right)$ is an orthogonal sequence in V.
(b) Assume that \mathbb{F} is a field in which square roots can be made sense of and that if $v \in V$ and $v \neq 0$ then $\langle v, v\rangle \neq 0$. Define

$$
\|v\|=\sqrt{\langle v, v\rangle}, \quad \text { for } v \in V
$$

Let $\left(b_{1}, \ldots, b_{n}\right)$ be an orthogonal basis of V. Define

$$
u_{1}=\frac{b_{1}}{\left\|b_{1}\right\|}, \quad \ldots, \quad u_{n}=\frac{b_{n}}{\left\|b_{n}\right\|}
$$

Then $\left(u_{1}, \ldots, u_{n}\right)$ is an orthonormal basis of V.
Proof. (Sketch) The proof is by induction on n.
For the base case, there is only one vector b_{1} and so there is nothing to show.
Induction step: Assume $\left(b_{1}, \ldots, b_{n}\right)$ are orthogonal.
Let $j \in\{1, \ldots, n\}$. Then

$$
\begin{aligned}
\left\langle b_{n+1}, b_{j}\right\rangle & =\left\langle p_{n+1}-\frac{\left\langle p_{n+1}, b_{1}\right\rangle}{\left\langle b_{1}, b_{1}\right\rangle} b_{1}-\cdots-\frac{\left\langle p_{n+1}, b_{n}\right\rangle}{\left\langle b_{n}, b_{n}\right\rangle} b_{n}, b_{j}\right\rangle \\
& =\left\langle p_{n+1}, b_{j}\right\rangle-\frac{\left\langle p_{n+1}, b_{1}\right\rangle}{\left\langle b_{1}, b_{1}\right\rangle}\left\langle b_{1}, b_{j}\right\rangle-\cdots-\frac{\left\langle p_{n+1}, b_{n}\right\rangle}{\left\langle b_{n}, b_{n}\right\rangle}\left\langle b_{n}, b_{j}\right\rangle \\
& =\left\langle p_{n+1}, b_{j}\right\rangle-\frac{\left\langle p_{n+1}, b_{j}\right\rangle}{\left\langle b_{j}, b_{j}\right\rangle}\left\langle b_{j}, b_{j}\right\rangle=\left\langle p_{n+1}, b_{j}\right\rangle-\left\langle p_{n+1}, b_{j}\right\rangle=0 \quad \text { and } \\
\left\langle b_{j}, b_{n+1}\right\rangle & =\left\langle b_{j}, p_{n+1}-\frac{\left\langle p_{n+1}, b_{1}\right\rangle}{\left\langle b_{1}, b_{1}\right\rangle} b_{1}-\cdots-\frac{\left\langle p_{n+1}, b_{n}\right\rangle}{\left\langle b_{n}, b_{n}\right\rangle} b_{n}\right\rangle \\
& =\left\langle b_{j}, p_{n+1}\right\rangle-\frac{\frac{\left\langle p_{n+1}, b_{1}\right\rangle}{\left\langle b_{1}, b_{1}\right\rangle}}{\left\langle p_{n+1}, b_{n}\right\rangle} \\
\left\langle b_{j}, b_{1}\right\rangle-\cdots-\frac{\left.\frac{\left\langle b_{n}, b_{n}\right\rangle}{}, b_{n}\right\rangle}{\left\langle p_{n+1}, b_{j}\right\rangle} & \left.b_{j}, b_{j}\right\rangle=\left\langle b_{j}, p_{n+1}\right\rangle-\overline{\left\langle p_{n+1}, b_{j}\right\rangle}=0 \\
& =\left\langle b_{j}, p_{n+1}\right\rangle-\frac{\left.b_{j}, b_{j}\right\rangle}{}=0
\end{aligned}
$$

where the identity $\overline{\left\langle b_{k}, b_{k}\right\rangle}=\left\langle b_{k}, b_{k}\right\rangle$ and the last equality follow from the assumption that \langle,$\rangle is$ Hermitian. So $\left(b_{1}, \ldots, b_{n+1}\right)$ are orthogonal.

10.12.9 Normal matrices give invariance

Proposition 10.21. Let $V=\mathbb{C}^{n}$ with inner product given by (17.1). Let

$$
A \in M_{n}(\mathbb{C}), \quad \lambda \in \mathbb{C} \quad \text { and } \quad V_{\lambda}=\operatorname{ker}(\lambda-A)
$$

If $A A^{*}=A^{*} A$ then
V_{λ} is A-invariant, $\quad V_{\lambda}^{\perp}$ is A-invariant, $\quad V_{\lambda}$ is A^{*}-invariant and V_{λ}^{\perp} is A^{*}-invariant.
Proof.
(a) Let $p \in V_{\lambda}$. Then $A p=\lambda p \in V_{\lambda}$. So V_{λ} is A invariant.
(b) Let $p \in V_{\lambda}$. Since $A\left(A^{*} p\right)=A^{*} A p=\lambda A^{*} p$ then $A^{*} p \in V_{\lambda}$. So V_{λ} is A^{*} invariant.
(c) Let $z \in V_{\lambda}^{\perp}$.

To show $A z_{\lambda} \in V_{\lambda}^{\perp}$.
To show: If $u \in V_{\lambda}$ then $\langle A z, u\rangle=0$.
Assume $u \in V_{\lambda}$.
To show: $\langle A z, u\rangle=0$.
By (b), $A^{*} u \in V_{\lambda}$, and so $\langle A z, u\rangle=\left\langle z, A^{*} u\right\rangle=0$.
So $A z \in V_{\lambda}^{\perp}$.
So V_{λ}^{\perp} is A-invariant.
(d) Let $z \in V_{\lambda}^{\perp}$.

To show: If $u \in V_{\lambda}$ then $\left\langle A^{*} z, u\right\rangle=0$.

$$
\left\langle A^{*} z, u\right\rangle=\langle z, A u\rangle=0, \quad \text { since } A u \in V_{\lambda}
$$

So $A^{*} z \in V_{\lambda}^{\perp}$. So V_{λ}^{\perp} is A^{*}-invariant.

10.12.10 The spectral theorem

Theorem 10.22. (Spectral theorem)
Let $n \in \mathbb{Z}_{>0}$ and $V=\mathbb{C}^{n}$ with inner product given by 17.1.
(a) Let $n \in \mathbb{Z}_{>0}$ and $A \in M_{n}(\mathbb{C})$ such that $A A^{*}=A^{*} A$. Then there exists a unitary $U \in M_{n}(\mathbb{C})$ and $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{C}$ such that

$$
U^{-1} A U=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)
$$

(b) Let $f: V \rightarrow V$ be a linear transformation such that $f f^{*}=f^{*} f$. Then there exists an orthonormal basis $\left(u_{1}, \ldots, u_{n}\right)$ of V consisting of eigenvectors of f.

Proof. The two statements are equivalent via the relation between A and f given by

$$
\begin{array}{lllc}
f: & V & \longrightarrow & V \\
& \longmapsto & \longmapsto & A v .
\end{array}
$$

The proof is by induction on n.
The base case is when $\operatorname{dim}(V)=1$. In this case $A \in M_{1}(\mathbb{C})$ is diagonal.
The induction step:
For $\mu \in \mathbb{C}$ let $V_{\mu}=\operatorname{ker}(\mu-f)$, the μ-eigenspace of f.
Since \mathbb{C} is algebraically closed, there exists $\lambda \in \mathbb{C}$ which is a root of the characteristic polynomial $\operatorname{det}(x-A)$.
So there exists $\lambda \in \mathbb{C}$ such that $\operatorname{det}(\lambda-A)=0$.
So there exists $\lambda \in \mathbb{C}$ such that $V_{\lambda}=\operatorname{ker}(\lambda-A) \neq 0$.
Let $k=\operatorname{dim}\left(V_{\lambda}\right)$ and let $\left(p_{1}, \ldots, p_{k}\right)$ be a basis of V_{λ}.
Use Gram-Schmidt to convert $\left(p_{1}, \ldots, p_{k}\right)$ to an orthogonal basis $\left(u_{1}, \ldots, u_{k}\right)$ of V_{λ}.
By definition of V_{λ}, the basis vectors $\left(u_{1}, \ldots, u_{k}\right)$ are all eigenvectors of f (of eigenvalue λ.
By Theorem 10.18 (orthogonal decomposition) and Proposition 10.21,

$$
V=V_{\lambda} \oplus\left(V_{\lambda}\right)^{\perp} \quad \text { and } V_{\lambda}^{\perp} \text { is } A \text {-invariant and } A^{*} \text {-invariant. }
$$

Let

Then $g_{1}=f_{1}^{*}$ and $f_{1} f_{1}^{*}=f_{1}^{*} f_{1}$.
Thus, by induction, there exists an orthonormal basis $\left(u_{k+1}, \ldots, u_{n}\right)$ of V_{λ}^{\perp} consisting of eigenvectors of f_{1}.
By definition of f_{1}, eigenvectors of f_{1} are eigenvectors of f.
So $\left(u_{1}, \ldots, u_{k}, u_{k+1}, \ldots, u_{n}\right)$ is an orthonormal basis of eigenvectors of f.

