Topic 4. Example 9. Is $W=\left\{a_{1} x+a_{2} x^{2} \mid a_{1}, a_{2} \in \mathbb{R}\right\}$ a subspace of $\mathbb{R}[x]_{\leq 2}$?
A subspace of $\mathbb{R}[x]_{\leq 2}$ is a subset $W \subseteq \mathbb{R}[x]_{\leq 2}$ such that
(a) If $w_{1}, w_{2} \in W$ then $w_{1}+w_{2} \in W$,
(b) $0 \in W$,
(c) If $w \in W$ then $-w \in W$,
(d) If $w \in W$ and $c \in \mathbb{R}$ then $c w \in W$.

Proof.

(a) Assume $w_{1}=a_{1} x+a_{2} x^{2} \in W$ and $w_{2}=b_{1} x+b_{2} x^{2} \in W$.

Then $a_{1}, a_{2} \in \mathbb{R}$ and $b_{1}, b_{2} \in \mathbb{R}$.
Then $w_{1}+w_{2}=a_{1} x+a_{2} x^{2}+b_{1} x+b_{2} x^{2}=\left(a_{1}+a_{1}\right) x+\left(b_{1}+b_{2}\right) x^{2}$ and $a_{1}+b_{1} \in \mathbb{R}$ and $a_{2}+b_{2} \in \mathbb{R}$.
So $w_{1}+w_{2} \in W$.
(b) $0=0 x+0 x^{2}$ satisfies $0 \in \mathbb{R}$ and $0 \in \mathbb{R}$. So $0 \in W$.
(c) Assume $w=a_{1} x+a_{2} x^{2} \in W$.

Then $a_{1}, a_{2} \in \mathbb{R}$.
Then $-w=-\left(a_{1} x+a_{2} x^{2}\right)=-a_{1} x+\left(-a_{2}\right) x^{2}$ and $-a_{1} \in R R$ and $-a_{2} \in \mathbb{R}$.
So $-w \in W$.
(d) Assume $w=a_{1} x+a_{2} x^{2} \in W$ and $c \in \mathbb{R}$.

Then $a_{1}, a_{2} \in \mathbb{R}$.
Then $c w=c\left(a_{1} x+a_{2} x^{2}\right)=\left(c a_{1}\right) x+\left(c a_{2}\right) x^{2}$ and $c a_{1} \in \mathbb{R}$ and $c a_{2} \in \mathbb{R}$.
So $c w \in W$.
So W is a subspace of $\mathbb{R}[x]_{\leq 2}$.

Topic 4. Example 11. Is

$$
S=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in M_{2}(\mathbb{R}) \right\rvert\, a d-b c=0\right\} \quad \text { a subspace of } M_{2}(\mathbb{R}) ?
$$

A subspace of $M_{2 \times 2}(\mathbb{R})$ is a subset $S \subseteq M_{2 \times 2}(\mathbb{R})$ such that
(a) If $w_{1}, w_{2} \in S$ then $w_{1}+w_{2} \in S$,
(b) $0 \in S$,
(c) If $w \in S$ then $-w \in S$,
(d) If $w \in S$ and $c \in \mathbb{R}$ then $c w \in S$.

Let $w_{1}=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$. Since $1 \cdot 0-0 \cdot 0=0-0=0$ then $w_{1} \in S$.
Let $w_{2}=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$. Since $0 \cdot 1-0 \cdot 0=0-0=0$ then $w_{2} \in S$.
Then

$$
w_{1}+w_{2}=\left(\begin{array}{cc}
1 & 0 \\
0 & 0
\end{array}\right)+\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad \text { and } \quad 1 \cdot 1-0 \cdot 0=1
$$

So $w_{1}+w_{2} \notin S$.
So S is not a subspace of $M_{2 \times 2}(\mathbb{R})$.

