Topic 4. Example 7. Is $W=\left\{|x, y, z\rangle \in \mathbb{R}^{3} \mid x+y+z=0\right\}$ a subspace of \mathbb{R}^{3} ?
A subspace of \mathbb{R}^{3} is a subset $W \subseteq \mathbb{R}^{3}$ such that
(a) If $w_{1}, w_{2} \in W$ then $w_{1}+w_{2} \in W$,
(b) $0 \in W$,
(c) If $w \in W$ then $-w \in W$,
(d) If $w \in W$ and $c \in \mathbb{R}$ then $c w \in W$.

Proof.
(a) Assume $w_{1}=|a, b, c\rangle \in W$ and $w_{2}=|x, y, z\rangle \in W$.

Then $a+b+c=0$ and $x+y+z=0$.
Then $w_{1}+w_{2}=|a+x, b+y, c+z\rangle$ and $(a+x)+(b+y)+(c+z)=(a+b+c)+(x+y+z)=0+0=0$.
So $w_{1}+w_{2} \in W$.
(b) $0=|0,0,0\rangle$ satisfies $0+0+0=0$. So $0 \in W$.
(c) Assume $w=|x, y, z\rangle \in W$.

Then $x+y+z=0$.
Then $-w=|-x,-y,-z\rangle$ and $(-x)+(-y)+(-z)=-(x+y+z)=-0=0$.
So $-w \in W$.
(d) Assume $w=|x, y, z\rangle \in W$ and $c \in \mathbb{R}$.

Then $x+y+z=0$.
Then $c w=|c x, c y, c z\rangle$ and $c x+c y+c z=c(x+y+z)=c \cdot 0=0$.
So $c w \in W$.
So W is a subspace of \mathbb{R}^{3}.
Topic 4. Example 8. Is the line $L=\left\{|x, y\rangle \in \mathbb{R}^{2} \mid y=2 x+1\right\}$ a subspace of \mathbb{R}^{2} ?
A subspace of \mathbb{R}^{2} is a subset $L \subseteq \mathbb{R}^{2}$ such that
(a) If $w_{1}, w_{2} \in L$ then $w_{1}+w_{2} \in L$,
(b) $0 \in L$,
(c) If $w \in L$ then $-w \in L$,
(d) If $w \in L$ and $c \in \mathbb{R}$ then $c w \in L$.

Since $0=|0,0\rangle$ and $0 \neq 2 \cdot 0+1$ then $0 \notin L$.
So L is not a subspace of \mathbb{R}^{2}.
Topic 4. Example ??. Is $W=\left\{|x, y\rangle \in \mathbb{R}^{2} \mid x \geq 0\right.$ and $\left.y \geq 0\right\}$ a subspace of \mathbb{R}^{2} ?
A subspace of \mathbb{R}^{2} is a subset $W \subseteq \mathbb{R}^{2}$ such that
(a) If $w_{1}, w_{2} \in W$ then $w_{1}+w_{2} \in W$,
(b) $0 \in W$,
(c) If $w \in W$ then $-w \in W$,
(d) If $w \in W$ and $c \in \mathbb{R}$ then $c w \in W$.

Let $w=|1,1\rangle$. Since $1 \geq 0$ and $1 \geq 0$ then $w \in W$.
Let $c=-1 \in \mathbb{R}$.
Then $c w=(-1) \cdot|1,1\rangle=|-1,-1\rangle$ and $-1 \nsupseteq 0$. So $c w \notin W$.
So W is not a subspace of \mathbb{R}^{2}.

