Topic 4. Example 23. Let $v_{1}, v_{2}, v_{3}, v_{4} \in \mathbb{R}^{3}$ be given by

$$
v_{1}=|1,2,3\rangle, \quad v_{2}=|3,6,9\rangle, \quad v_{3}=|-1,0,-2\rangle, \quad v_{4}=(1,4,4)
$$

(a) Is $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ linearly independent?
(b) Express v_{2} and v_{4} as linear combinations of v_{1} and v_{3}.
(c) Is $\left\{v_{1}, v_{3}\right\}$ linearly independent?
(a) Since $v_{2}=3 v_{1}$ then $3 v_{1}-v_{2}=0$.

So $c_{1}=3, c_{2}=-1, c_{3}=0, c_{4}=0$ is a solution to $c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}+c_{4} v_{4}=0$.
So $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is not linearly independent.
(b) Since $v_{2}=3 v_{1}+0 v_{3}$ then $v_{2} \in \mathbb{R}-\operatorname{span}\left\{v_{1}, v_{3}\right\}$.

Since $v_{1}+v_{3}=(0,2,1)$ and $v_{1}+(0,2,1)=(1,4,4)$.
So $v_{4}=2 v_{1}+v_{3}$. So $v_{4} \in \mathbb{R}-\operatorname{span}\left\{v_{1}, v_{3}\right\}$.
(c) To show: If $c_{1}, c_{2} \in \mathbb{R}$ and $c_{1}|1,2,3\rangle+c_{2}|-1,0,2\rangle=|0,0,0\rangle$ then $c_{1}=0$ and $c_{2}=0$.

Assume $c_{1}, c_{2} \in \mathbb{R}$ and $c_{1}|1,2,3\rangle+c_{2}|-1,0,2\rangle=|0,0,0\rangle$.
Then

$$
\begin{align*}
c_{1}-c_{2} & =0, \tag{Ex23c}\\
2 c_{1}+0 c_{2} & =0, \\
3 c_{1}+2 c_{2} & =0,
\end{align*} \quad \text { or, equivalently, } \quad\left(\begin{array}{cc}
1 & -1 \\
2 & 0 \\
3 & 2
\end{array}\right)\binom{c_{1}}{c_{2}}=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) .
$$

Skipping the row reduction steps (DON'T skip the row reduction steps on an exam or and assignment!), this system has only one solution: $c_{1}=0, c_{2}=0$.
So $\left\{v_{1}, v_{3}\right\}$ is linearly independent.

