Topic 4. Example 23. Let $v_1, v_2, v_3, v_4 \in \mathbb{R}^3$ be given by

$$v_1 = |1, 2, 3\rangle, \quad v_2 = |3, 6, 9\rangle, \quad v_3 = |-1, 0, -2\rangle, \quad v_4 = (1, 4, 4).$$

- (a) Is $\{v_1, v_2, v_3, v_4\}$ linearly independent?
- (b) Express v_2 and v_4 as linear combinations of v_1 and v_3 .
- (c) Is $\{v_1, v_3\}$ linearly independent?
- (a) Since $v_2 = 3v_1$ then $3v_1 v_2 = 0$.

So $c_1 = 3$, $c_2 = -1$, $c_3 = 0$, $c_4 = 0$ is a solution to $c_1v_1 + c_2v_2 + c_3v_3 + c_4v_4 = 0$.

So $\{v_1, v_2, v_3, v_4\}$ is not linearly independent.

(b) Since $v_2 = 3v_1 + 0v_3$ then $v_2 \in \mathbb{R}$ -span $\{v_1, v_3\}$.

Since $v_1 + v_3 = (0, 2, 1)$ and $v_1 + (0, 2, 1) = (1, 4, 4)$.

So $v_4 = 2v_1 + v_3$. So $v_4 \in \mathbb{R}$ -span $\{v_1, v_3\}$.

(c) To show: If $c_1, c_2 \in \mathbb{R}$ and $c_1|1, 2, 3\rangle + c_2|-1, 0, 2\rangle = |0, 0, 0\rangle$ then $c_1 = 0$ and $c_2 = 0$.

Assume $c_1, c_2 \in \mathbb{R}$ and $c_1|1, 2, 3\rangle + c_2|-1, 0, 2\rangle = |0, 0, 0\rangle$.

Then

$$c_1 - c_2 = 0,$$

 $2c_1 + 0c_2 = 0,$ or, equivalently, $\begin{pmatrix} 1 & -1 \\ 2 & 0 \\ 3 & 2 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$ (Ex23c)

Skipping the row reduction steps (DON'T skip the row reduction steps on an exam or and assignment!), this system has only one solution: $c_1 = 0$, $c_2 = 0$.

So $\{v_1, v_3\}$ is linearly independent.