Topic 4. Example 21. Let S be the subset of $\mathbb{R}[x]_{\leq 2}$ given by

$$
S=\left\{1+2 x+5 x^{2}, 1+x+x^{2}, 1+2 x+3 x^{2}\right\} . \quad \text { Is } S \text { linearly independent? }
$$

To show: If $c_{1}, c_{2}, c_{3} \in \mathbb{R}$ and $c_{1}\left(1+2 x+5 x^{2}\right)+c_{2}\left(1+x+x^{2}\right)+c_{3}\left(1+2 x+3 x^{2}\right)=0$ then $c_{1}=0$, $c_{2}=0, c_{3}=0$.
Assume $c_{1}, c_{2}, c_{3} \in \mathbb{R}$ and $c_{1}\left(1+2 x+5 x^{2}\right)+c_{2}\left(1+x+x^{2}\right)+c_{3}\left(1+2 x+3 x^{2}\right)=0$.
Then

$$
\begin{array}{r}
c_{1}+c_{2}+c_{3}=0, \tag{Ex21}\\
2 c_{1}+c_{2}+2 c_{3}=0, \\
5 c_{1}+c_{2}+3 c_{2}=0,
\end{array} \quad \text { or, equivalently, } \quad\left(\begin{array}{lll}
1 & 1 & 1 \\
2 & 1 & 2 \\
5 & 1 & 7
\end{array}\right)\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) .
$$

Skipping the row reduction steps (DON'T skip the row reduction steps on an exam or and assignment!), this system has only one solution: $c_{1}=0, c_{2}=0, c_{3}=0$.
So S is linearly independent.

Row reduction steps for Example 21.

Multiply both sides of the equation $\left(\begin{array}{lll}1 & 1 & 1 \\ 2 & 1 & 2 \\ 5 & 1 & 7\end{array}\right)\left(\begin{array}{l}c_{1} \\ c_{2} \\ c_{3}\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$ by $\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & -\frac{2}{5}\end{array}\right)$ to get

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & -\frac{2}{5}
\end{array}\right)\left(\begin{array}{ccc}
1 & 1 & 1 \\
2 & 1 & 2 \\
5 & 1 & 7
\end{array}\right)\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & -\frac{2}{5}
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) . \quad \text { So } \quad\left(\begin{array}{ccc}
1 & 1 & 1 \\
5 & 1 & 2 \\
0 & \frac{3}{5} & -\frac{4}{5}
\end{array}\right)\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

Multiply both sides by $\left(\begin{array}{ccc}0 & 1 & 0 \\ 1 & -\frac{1}{5} & 0 \\ 0 & 0 & 1\end{array}\right)$ to get

$$
\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & -\frac{1}{5} & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 1 & 1 \\
5 & 1 & 2 \\
0 & \frac{3}{5} & -\frac{4}{5}
\end{array}\right)\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)=\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & -\frac{1}{5} & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) . \quad \text { So } \quad\left(\begin{array}{ccc}
5 & 1 & 2 \\
0 & \frac{4}{5} & \frac{3}{5} \\
0 & \frac{3}{5} & -\frac{4}{5}
\end{array}\right)\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

Multiply both sides by $\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & -\frac{4}{3}\end{array}\right)$ to get

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & -\frac{4}{3}
\end{array}\right)\left(\begin{array}{ccc}
5 & 1 & 2 \\
0 & \frac{4}{5} & \frac{3}{5} \\
0 & \frac{3}{5} & -\frac{4}{5}
\end{array}\right)\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & -\frac{4}{3}
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) . \quad \text { So } \quad\left(\begin{array}{ccc}
5 & 1 & 2 \\
0 & \frac{3}{5} & -\frac{4}{5} \\
0 & 0 & -\frac{1}{3}
\end{array}\right)\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

which gives

$$
\begin{aligned}
5 c_{1}+c_{2}+2 c_{3}=0, \\
\frac{4}{5} c_{2}+\frac{3}{5} c_{3}=0 \\
-\frac{1}{3} c_{3}=0
\end{aligned} \quad \text { The only solution to this system is } \quad \begin{aligned}
& c_{3}=0 \\
& c_{2}=0 \\
& c_{1}=0
\end{aligned}
$$

