Topic 4. Example 20. Let S be the subset of \mathbb{R}^{3} given by

$$
S=\{(2,0,0),(6,1,7),(2,-1,2)\} . \quad \text { Is } S \text { linearly independent? }
$$

To show: If $c_{1}, c_{2}, c_{3} \in \mathbb{R}$ and $c_{1}|2,0,0\rangle+c_{2}|6,1,7\rangle+c_{3}|2,-1,2\rangle=|0,0,0\rangle$ then $c_{1}=0, c_{2}=0, c_{3}=0$. Assume $c_{1}, c_{2}, c_{3} \in \mathbb{R}$ and $c_{1}|2,0,0\rangle+c_{2}|6,1,7\rangle+c_{3}|2,-1,2\rangle=|0,0,0\rangle$.
Then

$$
\begin{align*}
2 c_{1}+6 c_{2}+2 c_{3} & =0, \tag{Ex20}\\
c_{2}-c_{3} & =0, \\
7 c_{2}+2 c_{3} & =0,
\end{align*} \quad \text { or equivalently } \quad\left(\begin{array}{ccc}
2 & 6 & 2 \\
0 & 1 & -1 \\
0 & 7 & 2
\end{array}\right)\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) .
$$

Skipping the row reduction steps (DON'T skip the row reduction steps on an exam or and assignment!), this system has only one solution: $c_{1}=0, c_{2}=0, c_{3}=0$.
So S is linearly independent.
Topic 4. Example 22. Let S be the subset of $M_{2}(\mathbb{F})$ given by

$$
S=\left\{\left(\begin{array}{ll}
1 & 3 \\
1 & 1
\end{array}\right),\left(\begin{array}{cc}
-2 & 1 \\
1 & -1
\end{array}\right),\left(\begin{array}{cc}
1 & 10 \\
4 & 2
\end{array}\right)\right\} . \quad \text { Is } S \text { linearly independent? }
$$

To show: If $c_{1}, c_{2}, c_{3} \in \mathbb{R}$ and $c_{1}\left(\begin{array}{cc}1 & 3 \\ 1 & 1\end{array}\right)+c_{2}\left(\begin{array}{cc}-2 & 1 \\ 1 & -1\end{array}\right)+c_{3}\left(\begin{array}{cc}1 & 10 \\ 4 & 2\end{array}\right)=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$ then $c_{1}=0, c_{2}=0$, $c_{3}=0$.
Assume $c_{1}, c_{2}, c_{3} \in \mathbb{R}$ and $c_{1}\left(\begin{array}{ll}1 & 3 \\ 1 & 1\end{array}\right)+c_{2}\left(\begin{array}{cc}-2 & 1 \\ 1 & -1\end{array}\right)+c_{3}\left(\begin{array}{cc}1 & 10 \\ 4 & 2\end{array}\right)=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$.
Then

$$
\begin{align*}
c_{1}-2 c_{2}+c_{3} & =0, \tag{Ex22}\\
3 c_{1}+c_{2}+10 c_{3} & =0, \\
c_{1}+c_{2}+4 c_{3} & =0, \\
c_{1}-c_{2}+2 c_{3} & =0,
\end{align*} \quad \text { or, equivalently, } \quad\left(\begin{array}{ccc}
1 & -2 & 1 \\
3 & 1 & 10 \\
1 & 1 & 4 \\
1 & -1 & 2
\end{array}\right) \quad\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) .
$$

Skipping the row reduction steps (DON'T skip the row reduction steps on an exam or and assignment!), this system has solutions

$$
\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)+t\left(\begin{array}{c}
-3 \\
1 \\
-1
\end{array}\right), \quad \text { with } t \in \mathbb{R}
$$

So $c_{1}=0, c_{2}=0, c_{3}=0$ is not the only solution.
So S is linearly independent.
Here is a check that $c_{1}=-3, c_{2}=1, c_{3}=-1$ is a solution:

$$
-3\left(\begin{array}{ll}
1 & 3 \\
1 & 1
\end{array}\right)+\left(\begin{array}{cc}
-2 & 1 \\
1 & -1
\end{array}\right)-\left(\begin{array}{cc}
1 & 10 \\
4 & 2
\end{array}\right)=-3\left(\begin{array}{ll}
1 & 3 \\
1 & 1
\end{array}\right)+\left(\begin{array}{cc}
-3 & -9 \\
-3 & -3
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
$$

