Topic 4. Example 19a. Let S be the subset of \mathbb{R}^{3} given by

$$
S=\{(2,-1,1),(-6,3,-3)\} . \quad \text { Is } S \text { linearly independent? }
$$

To show: If $c_{1}, c_{2} \in \mathbb{R}$ and $c_{1}|2,-1,1\rangle+c_{2}|-6,3,-3\rangle=|0,0,0\rangle$ then $c_{1}=0, c_{2}=0$.
Assume $c_{1}, c_{2} \in \mathbb{R}$ and $c_{1}|2,-1,1\rangle+c_{2}|-6,3,-3\rangle=|0,0,0\rangle$.
Then

$$
\begin{align*}
2 c_{1}-6 c_{2} & =0, \tag{Ex19a}\\
-c_{1}+3 c_{2} & =0, \\
c_{1}-3 c_{2} & =0,
\end{align*} \quad \text { or equivalently } \quad\left(\begin{array}{cc}
2 & -6 \\
-1 & 3 \\
1 & -3
\end{array}\right)\binom{c_{1}}{c_{2}}=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) .
$$

Skipping the row reduction steps (DON'T skip the row reduction steps on an exam or and assignment!), this system has solutions

$$
\binom{c_{1}}{c_{2}}=\binom{0}{0}+t\binom{3}{1}, \quad \text { with } t \in \mathbb{R}
$$

So $c_{1}=0, c_{2}=0$ is not the only solution.
So S is not linearly independent.
Topic 4. Example 19b. Let B be the subset of \mathbb{R}^{3} given by

$$
B=\{(2,-1,1),(4,0,2)\} . \quad \text { Is } B \text { linearly independent? }
$$

To show: If $c_{1}, c_{2} \in \mathbb{R}$ and $c_{1}|2,-1,1\rangle+c_{2}|4,0,2\rangle=|0,0,0\rangle$ then $c_{1}=0, c_{2}=0$.
Assume $c_{1}, c_{2} \in \mathbb{R}$ and $c_{1}|2,-1,1\rangle+c_{2}|-4,0,2\rangle=|0,0,0\rangle$
Then

$$
\begin{align*}
2 c_{1}+4 c_{2} & =0, \tag{Ex19b}\\
-c_{1}+0 c_{2} & =0, \\
c_{1}+2 c_{2} & =0,
\end{align*} \quad \text { or equivalently } \quad\left(\begin{array}{cc}
2 & 4 \\
-1 & 0 \\
1 & 2
\end{array}\right)\binom{c_{1}}{c_{2}}=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

Skipping the row reduction steps (DON'T skip the row reduction steps on an exam or and assignment!), this system has only one solution $c_{1}=0, c_{2}=0$.
So S is linearly independent.

