Topic 4. Example 18. Let S be the subset of $\mathbb{R}[x]_{\leq 2}$ given by

$$
S=\left\{1+x+x^{2}, x^{2}\right\} . \quad \text { Show that } \operatorname{span}(S)=\mathbb{R}[x]_{\leq 2}
$$

To show: (a) $\operatorname{span}(S) \subseteq \mathbb{R}[x]_{\leq 2}$
(b) $\mathbb{R}[x]_{\leq 2} \subseteq \mathbb{R}-\operatorname{span}(S)$.
(a) Since $S \subseteq \mathbb{R}[x]_{\leq 2}$ and $\mathbb{R}[x]_{\leq 2}$ is closed under addition and scalar mutliplication then \mathbb{R}-span $(S) \subseteq$ $\mathbb{R}[x]_{\leq 2}$.
(b) To show: $\mathbb{R}[x]_{\leq 2} \subseteq \operatorname{span}(S)$.

To show: $\mathbb{R}-\operatorname{span}\left\{1, x, x^{2}\right\} \subseteq \operatorname{span}(S)$.
Since $\operatorname{span}(S)$ is closed under addition and scalar multiplication,
To show: $\left\{1, x, x^{2}\right\} \subseteq \operatorname{span}(S)$.
To show: There exist $c_{1}, c_{2}, d_{1}, d_{2}, r_{1}, r_{2} \in \mathbb{R}$ such that

$$
c_{1}\left(1+x+x^{2}\right)+c_{2} x^{2}=1, \quad d_{1}\left(1+x+x^{2}\right)+d_{2} x^{2}=x, \quad \text { and } \quad r_{1}\left(1+x+x^{2}\right)+r_{2} x^{2}=x^{2}
$$

To show: There exist $c_{1}, c_{2}, d_{1}, d_{2}, r_{1}, r_{2} \in \mathbb{R}$ such that $\left(\begin{array}{cc}1 & 0 \\ 1 & 0 \\ 1 & 1\end{array}\right)\left(\begin{array}{lll}c_{1} & d_{1} & r_{1} \\ c_{2} & d_{2} & r_{2}\end{array}\right)=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$.
Multiply both sides by $\left(\begin{array}{ccc}-1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$ to get $\left(\begin{array}{ll}0 & 0 \\ 1 & 0 \\ 1 & 1\end{array}\right)\left(\begin{array}{lll}c_{1} & d_{1} & r_{1} \\ c_{2} & d_{2} & r_{2}\end{array}\right)=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$.
Since the top row on the left hand side is all 0 and the top row on the right hand sides is not all 0 then there do not exist $c_{1}, c_{2}, d_{1}, d_{2}, r_{1}, r_{2} \in \mathbb{R}$ such that

$$
\left(\begin{array}{ll}
1 & 0 \\
1 & 0 \\
1 & 1
\end{array}\right)\left(\begin{array}{lll}
c_{1} & d_{1} & r_{1} \\
c_{2} & d_{2} & r_{2}
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

So $\left\{1, x, x^{2}\right\} \nsubseteq \operatorname{span}(S)$.
So $\mathbb{R}-\operatorname{span}\left\{1, x, x^{2}\right\} \nsubseteq \operatorname{span}(S)$.
So $\mathbb{R}[x]_{\leq 2} \nsubseteq \operatorname{span}(S)$.
So \mathbb{R}-span $(S) \neq \mathbb{R}[x]_{\leq 2}$.

