Topic 4. Example 18. Let S be the subset of $\mathbb{R}[x]_{\leq 2}$ given by

 $S = \{1 + x + x^2, x^2\}.$ Show that $\text{span}(S) = \mathbb{R}[x]_{\leq 2}.$

To show: (a) $\operatorname{span}(S) \subseteq \mathbb{R}[x]_{\leq 2}$ (b) $\mathbb{R}[x]_{\leq 2} \subseteq \mathbb{R}\operatorname{-span}(S)$.

- (a) Since $S \subseteq \mathbb{R}[x]_{\leq 2}$ and $\mathbb{R}[x]_{\leq 2}$ is closed under addition and scalar multiplication then \mathbb{R} -span $(S) \subseteq \mathbb{R}[x]_{\leq 2}$.
- (b) To show: R[x]≤2 ⊆ span(S).
 To show: R-span{1, x, x²} ⊆ span(S).
 Since span(S) is closed under addition and scalar multiplication,
 To show: {1, x, x²} ⊆ span(S).
 To show: There exist c1, c2, d1, d2, r1, r2 ∈ R such that

$$c_1(1+x+x^2) + c_2x^2 = 1$$
, $d_1(1+x+x^2) + d_2x^2 = x$, and $r_1(1+x+x^2) + r_2x^2 = x^2$.

To show: There exist
$$c_1, c_2, d_1, d_2, r_1, r_2 \in \mathbb{R}$$
 such that $\begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} c_1 & d_1 & r_1 \\ c_2 & d_2 & r_2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$
Multiply both sides by $\begin{pmatrix} -1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ to get $\begin{pmatrix} 0 & 0 \\ 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} c_1 & d_1 & r_1 \\ c_2 & d_2 & r_2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

Since the top row on the left hand side is all 0 and the top row on the right hand sides is not all 0 then there do not exist $c_1, c_2, d_1, d_2, r_1, r_2 \in \mathbb{R}$ such that

$$\begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} c_1 & d_1 & r_1 \\ c_2 & d_2 & r_2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

So $\{1, x, x^2\} \not\subseteq \operatorname{span}(S)$. So \mathbb{R} -span $\{1, x, x^2\} \not\subseteq \operatorname{span}(S)$. So $\mathbb{R}[x]_{\leq 2} \not\subseteq \operatorname{span}(S)$. So \mathbb{R} -span $(S) \neq \mathbb{R}[x]_{\leq 2}$.