Topic 4. Example 17. Let S be the subset of \mathbb{R}^{3} given by

$$
S=\{|1,2,0\rangle,|1,5,3\rangle,|0,1,1\rangle\} . \quad \text { Show that } \operatorname{span}(S)=\mathbb{R}^{3}
$$

To show: (a) $\operatorname{span}(S) \subseteq \mathbb{R}^{3}$
(b) $\mathbb{R}^{3} \subseteq \mathbb{R}-\operatorname{span}(S)$.
(a) Since $S \subseteq \mathbb{R}^{2}$ and \mathbb{R}^{2} is closed under addition and scalar mutliplication then $\operatorname{span}(S) \subseteq \mathbb{R}^{2}$.
(b) To show: $\mathbb{R}^{2} \subseteq \operatorname{span}(S)$.

To show: $\operatorname{span}\{|1,0,0\rangle,|0,1,0\rangle,|0,0,1\rangle\} \subseteq \operatorname{span}(S)$.
Since $\operatorname{span}(S)$ is closed under addition and scalar multiplication,
To show: $\{|1,0.0\rangle,|0,1.0\rangle,|0,0,1\rangle\} \subseteq \operatorname{span}(S)$.
To show: There exist $c_{1}, c_{2}, c_{3}, d_{1}, d_{2}, d_{3}, r_{1}, r_{2}, r_{3} \in \mathbb{R}$ such that

$$
\begin{aligned}
c_{1}|1,2,0\rangle+c_{2}|1,5,3\rangle+c_{3}|0,1,1\rangle & =|1,0,0\rangle \\
d_{1}|1,2,0\rangle+d_{2}|1,5,3\rangle+d_{3}|0,1,1\rangle & =|0,1,0\rangle \\
r_{1}|1,2,0\rangle+r_{2}|1,5,3\rangle+r_{3}|0,1,1\rangle & =|0,0,1\rangle
\end{aligned}
$$

To show: There exist $c_{1}, c_{2}, c_{3}, d_{1}, d_{2}, d_{3}, r_{1}, r_{2}, r_{3} \in \mathbb{R}$ such that

$$
\left(\begin{array}{lll}
1 & 1 & 0 \\
2 & 5 & 1 \\
0 & 3 & 1
\end{array}\right)\left(\begin{array}{lll}
c_{1} & d_{1} & r_{1} \\
c_{2} & d_{2} & r_{2} \\
c_{3} & d_{3} & r_{3}
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Multiply both sides by $\left(\begin{array}{ccc}1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$ to get $\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 3 & 1 \\ 0 & 3 & 1\end{array}\right)\left(\begin{array}{ccc}c_{1} & d_{1} & r_{1} \\ c_{2} & d_{2} & r_{2} \\ c_{3} & d_{3} & r_{3}\end{array}\right)=\left(\begin{array}{ccc}1 & -2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$.
Multiply both sides by $\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1\end{array}\right)$ to get $\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 3 & 1 \\ 0 & 0 & 0\end{array}\right)\left(\begin{array}{lll}c_{1} & d_{1} & r_{1} \\ c_{2} & d_{2} & r_{2} \\ c_{3} & d_{3} & r_{3}\end{array}\right)=\left(\begin{array}{ccc}1 & -2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$.
Since the bottom row on the left hand side is all 0 and the bottom row on the right hand sides is not all 0 then there do not exist $c_{1}, c_{2}, c_{3}, d_{1}, d_{2}, d_{3}, r_{1}, r_{2}, r_{3} \in \mathbb{R}$ such that

$$
\left(\begin{array}{lll}
1 & 1 & 0 \\
2 & 5 & 1 \\
0 & 3 & 1
\end{array}\right)\left(\begin{array}{lll}
c_{1} & d_{1} & r_{1} \\
c_{2} & d_{2} & r_{2} \\
c_{3} & d_{3} & r_{3}
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

So $\{|1,0.0\rangle,|0,1.0\rangle,|0,0,1\rangle\} \nsubseteq \mathbb{R}-\operatorname{span}(S)$.
So $\operatorname{span}(S) \neq \mathbb{R}^{2}$.

