Topic 4. Example 16. Let S be the subset of \mathbb{R}^{2} given by

$$
S=\{|1,-1\rangle,|2,4\rangle\} . \quad \text { Show that } \operatorname{span}(S)=\mathbb{R}^{2}
$$

To show: (a) $\mathbb{R}-\operatorname{span}(S) \subseteq \mathbb{R}^{2}$
(b) $\mathbb{R}^{2} \subseteq \mathbb{R}-\operatorname{span}(S)$.
(a) Since $S \subseteq \mathbb{R}^{2}$ and \mathbb{R}^{2} is closed under addition and scalar mutliplication then \mathbb{R}-span $(S) \subseteq \mathbb{R}^{2}$.
(b) To show: $\mathbb{R}^{2} \subseteq \mathbb{R}-\operatorname{span}(S)$.

To show: \mathbb{R}-span $\{|1,0\rangle,|0,1\rangle\} \subseteq \mathbb{R}$-span (S).
Since \mathbb{R}-span (S) is closed under addition and scalar multiplication,
To show: $\{|1,0\rangle,|0,1\rangle\} \subseteq \mathbb{R}$-span (S).
To show: There exist $c_{1}, c_{2}, d_{1}, d_{2} \in \mathbb{R}$ such that

$$
c_{1}|1,-1\rangle+c_{2}|2,4\rangle=|1,0\rangle \quad \text { and } \quad d_{1}|1,-1\rangle+d_{2}|2,4\rangle=|0,1\rangle
$$

To show: There exist $c_{1}, c_{2}, d_{1}, d_{2} \in \mathbb{R}$ such that $\left(\begin{array}{cc}1 & 2 \\ -1 & 4\end{array}\right)\left(\begin{array}{ll}c_{1} & d_{1} \\ c_{2} & d_{2}\end{array}\right)=\left(\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right)$.
Since

$$
\left(\begin{array}{cc}
1 & 2 \\
-1 & 4
\end{array}\right)\left(\begin{array}{cc}
\frac{2}{3} & -\frac{1}{3} \\
\frac{1}{6} & \frac{1}{6}
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad \text { then }
$$

$$
\begin{aligned}
& \frac{2}{3}|1,-1\rangle+\frac{1}{6}|2,4\rangle=|1,0\rangle, \text { and } \\
& \quad-\frac{1}{3}|1,-1\rangle+\frac{1}{6}|2,4\rangle=|0,1\rangle
\end{aligned}
$$

So $|1,0\rangle \in \mathbb{R}-\operatorname{span}(S)$ and $|0,1\rangle \in \mathbb{R}-\operatorname{span}(S)$.
So \mathbb{R}-span $\{|1,0\rangle,|0,1\rangle\} \subseteq \mathbb{R}$-span (S).
So $\mathbb{R}^{2} \subseteq \mathbb{R}-\operatorname{span}(S)$.
So $\mathbb{R}-\operatorname{span}(S)=\mathbb{R}^{2}$.

