Topic 4. Example 13. In \mathbb{R}^3 , is $|1, 2, 3\rangle \in \mathbb{R}$ -span $\{|1, -1, 2\rangle, |-1, 1, 2\rangle\}$?

To show: There exist $c_1, c_2 \in \mathbb{R}$ such that $c_1|1, -1, 2\rangle + c_2|-1, 1, 2\rangle = |1, 2, 3\rangle$. To show: The system

 $c_1 - c_2 = 1,$ $-c_1 + c_2 = 2,$ has a solution. $2c_1 + 2c_2 = 3,$

In matrix form the equations are $\begin{pmatrix} 2 & 2\\ 1 & -1\\ -1 & 1 \end{pmatrix} \begin{pmatrix} c_1\\ c_2 \end{pmatrix} = \begin{pmatrix} 3\\ 1\\ 2 \end{pmatrix}$.

Multiplying both sides by $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$ gives $\begin{pmatrix} 2 & 2 \\ -1 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \\ 3 \end{pmatrix}$. Already this gives an equation $0c_1 + 0c_2 = 3$, which has no solution.

So $|1,2,3\rangle \notin \mathbb{R}$ -span{ $|1,-1,2\rangle$ and $|-1,1,2\rangle$ }. So $|1,2,3\rangle$ is not a linear combination of $|1,-1,2\rangle$ and $|-1,1,2\rangle$.

Topic 4. Example 14. In $\mathbb{R}[x]_{\leq 2}$, is $1 - 2x - x^2 \in \mathbb{R}$ -span $\{1 + x + x^2, 3 + x^2\}$?

To show: There exist $c_1, c_2 \in \mathbb{R}$ such that $c_1(1 + x + x^2) + c_2(3 + x^2) = 1 - 2x - x^2$. To show: The system

$$c_1 + 3c_2 = 1,$$

 $c_1 + 0c_2 = -2,$ has a solution.
 $c_1 + c_2 = -1.$

In matrix form the equations are

$$\begin{pmatrix} 1 & 3\\ 1 & 0\\ 1 & 1 \end{pmatrix} \begin{pmatrix} c_1\\ c_2 \end{pmatrix} = \begin{pmatrix} 1\\ -2\\ -1 \end{pmatrix}.$$

Skipping the row reduction steps, $c_1 = -2$ and $c_2 = 1$ is a solution to this system. So $-2(1 + x + x^2) + (3 + x^2) = 1 - 2x - x^2$. So $1 - 2x - x^2 \in \mathbb{R}$ -span $\{1 + x + x^2, 3 + x^2\}$. So $1 - 2x - x^2$ is a linear combination of $1 + x + x^2$ and $3 + x^2$.

Topic 4. Example 15. Let S be the subset of \mathbb{R}^3 given by

$$S = \{(1, 1, 1), (2, 2, 2), (3, 3, 3)\}.$$
 Determine span(S).

In this case

$$span(S) = \{c_1 | 1, 1, 1\rangle + c_2 | 2, 2, 2\rangle + c_3 | 3, 3, 3\rangle | c_1, c_2, c_3 \in \mathbb{R} \}$$

= $\{c_1 | 1, 1, 1\rangle + 2c_2 | 1, 1, 1\rangle + 3c_3 | 1, 1, 1\rangle | c_1, c_2, c_3 \in \mathbb{R} \}$
= $\{(c_1 + 2c_2 + 3c_3) | 1, 1, 1\rangle | c_1, c_2, c_3 \in \mathbb{R} \}$
= $\{t | 1, 1, 1\rangle | t \in \mathbb{R} \}$
= $\{|t, t, t\rangle | t \in \mathbb{R} \}.$