Topic 4. Example 13. In \mathbb{R}^{3}, is $|1,2,3\rangle \in \mathbb{R}$-span $\{|1,-1,2\rangle,|-1,1,2\rangle\}$?
To show: There exist $c_{1}, c_{2} \in \mathbb{R}$ such that $c_{1}|1,-1,2\rangle+c_{2}|-1,1,2\rangle=|1,2,3\rangle$.
To show: The system

$$
\begin{aligned}
& c_{1}-c_{2}=1, \\
& -c_{1}+c_{2}=2, \quad \text { has a solution. } \\
& 2 c_{1}+2 c_{2}=3,
\end{aligned}
$$

In matrix form the equations are $\left(\begin{array}{cc}2 & 2 \\ 1 & -1 \\ -1 & 1\end{array}\right)\binom{c_{1}}{c_{2}}=\left(\begin{array}{l}3 \\ 1 \\ 2\end{array}\right)$.
Multiplying both sides by $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1\end{array}\right)$ gives $\left(\begin{array}{cc}2 & 2 \\ -1 & 1 \\ 0 & 0\end{array}\right)\binom{c_{1}}{c_{2}}=\left(\begin{array}{l}3 \\ 2 \\ 3\end{array}\right)$.
Already this gives an equation $0 c_{1}+0 c_{2}=3$, which has no solution.
So $|1,2,3\rangle \notin \mathbb{R}$-span $\{|1,-1,2\rangle$ and $|-1,1,2\rangle\}$.
So $|1,2,3\rangle$ is not a linear combination of $|1,-1,2\rangle$ and $|-1,1,2\rangle$.
Topic 4. Example 14. In $\mathbb{R}[x]_{\leq 2}$, is $1-2 x-x^{2} \in \mathbb{R}-\operatorname{span}\left\{1+x+x^{2}, 3+x^{2}\right\}$. ?
To show: There exist $c_{1}, c_{2} \in \mathbb{R}$ such that $c_{1}\left(1+x+x^{2}\right)+c_{2}\left(3+x^{2}\right)=1-2 x-x^{2}$.
To show: The system

$$
\begin{aligned}
& c_{1}+3 c_{2}=1, \\
& c_{1}+0 c_{2}=-2, \quad \text { has a solution. } \\
& c_{1}+c_{2}=-1
\end{aligned}
$$

In matrix form the equations are

$$
\left(\begin{array}{ll}
1 & 3 \\
1 & 0 \\
1 & 1
\end{array}\right)\binom{c_{1}}{c_{2}}=\left(\begin{array}{c}
1 \\
-2 \\
-1
\end{array}\right)
$$

Skipping the row reduction steps, $c_{1}=-2$ and $c_{2}=1$ is a solution to this system.
So $-2\left(1+x+x^{2}\right)+\left(3+x^{2}\right)=1-2 x-x^{2}$.
So $1-2 x-x^{2} \in \mathbb{R}$-span $\left\{1+x+x^{2}, 3+x^{2}\right\}$.
So $1-2 x-x^{2}$ is a linear combination of $1+x+x^{2}$ and $3+x^{2}$.
Topic 4. Example 15. Let S be the subset of \mathbb{R}^{3} given by

$$
S=\{(1,1,1),(2,2,2),(3,3,3)\} . \quad \text { Determine } \operatorname{span}(S)
$$

In this case

$$
\begin{aligned}
\operatorname{span}(S) & =\left\{c_{1}|1,1,1\rangle+c_{2}|2,2,2\rangle+c_{3}|3,3,3\rangle \mid c_{1}, c_{2}, c_{3} \in \mathbb{R}\right\} \\
& =\left\{c_{1}|1,1,1\rangle+2 c_{2}|1,1,1\rangle+3 c_{3}|1,1,1\rangle \mid c_{1}, c_{2}, c_{3} \in \mathbb{R}\right\} \\
& =\left\{\left(c_{1}+2 c_{2}+3 c_{3}\right)|1,1,1\rangle \mid c_{1}, c_{2}, c_{3} \in \mathbb{R}\right\} \\
& =\{t|1,1,1\rangle \mid t \in \mathbb{R}\} \\
& =\{|t, t, t\rangle \mid t \in \mathbb{R}\}
\end{aligned}
$$

