Topic 4. Example 10. Is the set of real 2×2 matrices whose trace is equal to 0 a subspace of $M_{2 \times 2}(\mathbb{R}) ?$
A subspace of $M_{2 \times 2}(\mathbb{R})$ is a subset $W \subseteq M_{2 \times 2}(\mathbb{R})$ such that
(a) If $w_{1}, w_{2} \in W$ then $w_{1}+w_{2} \in W$,
(b) $0 \in W$,
(c) If $w \in W$ then $-w \in W$,
(d) If $w \in W$ and $c \in \mathbb{R}$ then $c w \in W$.

Proof. The set of real 2×2 matrices whose trace is equal to 0 is

$$
W=\left\{\left.\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right) \right\rvert\, a_{11}+a_{22}=0\right\}
$$

(a) Assume $w_{1}=\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right) \in W$ and $w_{2}=\left(\begin{array}{ll}b_{11} & b_{12} \\ b_{21} & b_{22}\end{array}\right) \in W$.

Then $a_{11}+a_{22}=0$ and $b_{11}+b_{22}=0$.
Then $w_{1}+w_{2}=\left(\begin{array}{ll}a_{11}+b_{11} & a_{12}+b_{12} \\ a_{21}+b_{21} & a_{22}+b_{22}\end{array}\right)$ and

$$
\left(a_{11}+b_{11}\right)+\left(a_{22}+b_{22}\right)=\left(a_{11}+a_{22}\right)+\left(b_{11}+b_{22}\right)=0+0=0
$$

So $w_{1}+w_{2} \in W$.
(b) $0=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)(0,0,0)$ satisfies $0+0=0$. So $0 \in W$.
(c) Assume $w=\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right) \in W$.

Then $a_{11}+a_{22}=0$.
Then $-w=-\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)=\left(\begin{array}{ll}-a_{11} & -a_{12} \\ -a_{21} & -a_{22}\end{array}\right)$ and $\left(-a_{11}\right)+\left(-a_{22}\right)=-\left(a_{11}+a_{22}\right)=-0=0$.
So $-w \in W$.
(d) Assume $w=\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right) \in W$ and $c \in \mathbb{R}$.

Then $a_{11}+a_{22}=0$.
Then $c w=c\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)=\left(\begin{array}{ll}c a_{11} & c a_{12} \\ c a_{21} & c a_{22}\end{array}\right)$ and

$$
c a_{11}+c a_{22}=c\left(a_{11}+a_{22}\right)=c \cdot 0=0
$$

So $c w \in W$.
So W is a subspace of $M_{2 \times 2}(\mathbb{R})$.

