8.7 Points, lines and planes in \mathbb{R}^{3}

8.7.1 Equation of points in \mathbb{R}^{3}

The equations for the point $r_{0}=\left|x_{0}, y_{0}, z_{0}\right\rangle$ in \mathbb{R}^{3} are

$$
\begin{aligned}
& x=x_{0} \\
& y=y_{0} \\
& z=z_{0}
\end{aligned}
$$

$$
y=y_{0}, \quad P I C T U R E
$$

8.7.2 Equations of lines in \mathbb{R}^{3}

Let $r_{0}=\left|x_{0}, y_{0}, z_{0}\right\rangle \in \mathbb{R}^{3}$ and $v=|a, b, c\rangle \in \mathbb{R}^{3}$. The line in \mathbb{R}^{3} with direction v going through the point r_{0} is

$$
r_{0}+\mathbb{R} v=\left\{r_{0}+t v \mid t \in \mathbb{R}\right\}=\left(\begin{array}{l}
x_{0} \\
y_{0} \\
z_{0}
\end{array}\right)+\operatorname{span}\left\{\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)\right\} . \quad \text { PICTURE }
$$

The points in the line are the $|x, y, z\rangle$ in \mathbb{R}^{3} such that

$$
\begin{aligned}
& x=x_{0}+t a \\
& y=y_{0}+t b, \quad \text { with } t \in \mathbb{R} . \\
& z=z_{0}+t c
\end{aligned}
$$

Solving for t gives that that the points on the line are the $|x, y, z\rangle$ in \mathbb{R}^{3} which satisfy the equations

$$
\frac{x-x_{0}}{a}=\frac{y-y_{0}}{b}=\frac{z-z_{0}}{c}
$$

8.7.3 Equations of planes in \mathbb{R}^{3}

Let $r_{0}=\left|x_{0}, y_{0}, z_{0}\right\rangle$ in \mathbb{R}^{3} and let $u=\left|u_{1}, u_{2}, u_{3}\right\rangle$ and $v=\left|v_{1}, v_{2}, v_{3}\right\rangle$ in \mathbb{R}^{3}. Let

$$
n=|a, b, c\rangle \quad \text { be a vector in } \mathbb{R}^{3} \text { such that }\langle n \mid u\rangle=0 \text { and }\langle n \mid v\rangle=0
$$

The plane orthogonal to n going through the point r_{0} is

$$
r_{0}+n^{\perp}=\left\{r=r_{0}+s u+t v \mid s, t \in \mathbb{R}\right\} \quad \text { PICTURE }
$$

In other words, the points in the plane are $|x, y, z\rangle$ in \mathbb{R}^{3} such that

$$
\begin{aligned}
& x=x_{0}+s u_{1}+t v_{1}, \\
& y=y_{0}+s u_{2}+t v_{2}, \\
& z=z_{0}+s u_{3}+t v_{3}
\end{aligned} \quad \text { with } s, t \in \mathbb{R}
$$

If r is in the plane then $r-r_{0}$ is orthogonal to n and so the plane is

$$
r_{0}+\hat{n}^{\perp}=\left\{r=\left(|x, y, z\rangle \in \mathbb{R}^{3} \mid\left\langle r-r_{0} \mid n\right\rangle=0\right\}\right.
$$

If $r=r_{0}+s u+t v$ is in the plane then $\langle r \mid n\rangle=\left\langle r_{0}+s u+t v \mid n\right\rangle=\langle r \mid n\rangle+s\langle u \mid n\rangle+t\langle v \mid n\rangle=\left\langle r_{0} \mid n\right\rangle+0+0$. So

$$
r_{0}+n^{\perp}=\left\{|x, y, z\rangle \in \mathbb{R}^{3} \mid a x+b y+c z=d\right\}, \quad \text { where } \quad n=|a, b, c\rangle \quad \text { and } \quad d=\left\langle r_{0} \mid n\right\rangle
$$

In other words, the points in the plane are the $|x, y, z\rangle$ in \mathbb{R}^{3} such that

$$
a x+b y+c z=d, \quad \text { where } n=|a, b, c\rangle \text { and } d=a x_{0}+b y_{0}+c z_{0}
$$

