8.7 Points, lines and planes in \mathbb{R}^3

8.7.1 Equation of points in \mathbb{R}^3

The equations for the point $r_0 = |x_0, y_0, z_0\rangle$ in \mathbb{R}^3 are

$$\begin{aligned} x &= x_0, \\ y &= y_0, \\ z &= z_0. \end{aligned}$$
 PICTURE

8.7.2 Equations of lines in \mathbb{R}^3

Let $r_0 = |x_0, y_0, z_0\rangle \in \mathbb{R}^3$ and $v = |a, b, c\rangle \in \mathbb{R}^3$. The line in \mathbb{R}^3 with direction v going through the point r_0 is

$$r_0 + \mathbb{R}v = \{r_0 + tv \mid t \in \mathbb{R}\} = \begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix} + \operatorname{span}\left\{ \begin{pmatrix} a \\ b \\ c \end{pmatrix} \right\}. \quad PICTURE$$

The points in the line are the $|x, y, z\rangle$ in \mathbb{R}^3 such that

$$\begin{aligned} x &= x_0 + ta, \\ y &= y_0 + tb, \\ z &= z_0 + tc, \end{aligned}$$
 with $t \in \mathbb{R}$.

Solving for t gives that the points on the line are the $|x, y, z\rangle$ in \mathbb{R}^3 which satisfy the equations

$$\frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c}$$

8.7.3 Equations of planes in \mathbb{R}^3

Let $r_0 = |x_0, y_0, z_0\rangle$ in \mathbb{R}^3 and let $u = |u_1, u_2, u_3\rangle$ and $v = |v_1, v_2, v_3\rangle$ in \mathbb{R}^3 . Let

$$n = |a, b, c\rangle$$
 be a vector in \mathbb{R}^3 such that $\langle n|u\rangle = 0$ and $\langle n|v\rangle = 0$

The plane orthogonal to n going through the point r_0 is

$$r_0 + n^{\perp} = \{r = r_0 + su + tv \mid s, t \in \mathbb{R}\} \qquad PICTURE$$

In other words, the points in the plane are $|x, y, z\rangle$ in \mathbb{R}^3 such that

$$x = x_0 + su_1 + tv_1,$$

 $y = y_0 + su_2 + tv_2,$ with $s, t \in \mathbb{R}.$
 $z = z_0 + su_3 + tv_3,$

If r is in the plane then $r - r_0$ is orthogonal to n and so the plane is

$$r_0 + \hat{n}^{\perp} = \{ r = (|x, y, z) \in \mathbb{R}^3 \mid \langle r - r_0 | n \rangle = 0 \}$$

If $r = r_0 + su + tv$ is in the plane then $\langle r|n \rangle = \langle r_0 + su + tv|n \rangle = \langle r|n \rangle + s \langle u|n \rangle + t \langle v|n \rangle = \langle r_0|n \rangle + 0 + 0$. So

$$r_0 + n^{\perp} = \{ |x, y, z\rangle \in \mathbb{R}^3 \mid ax + by + cz = d \}, \text{ where } n = |a, b, c\rangle \text{ and } d = \langle r_0 | n \rangle.$$

In other words, the points in the plane are the $|x,y,z\rangle$ in \mathbb{R}^3 such that

$$ax + by + cz = d$$
, where $n = |a, b, c\rangle$ and $d = ax_0 + by_0 + cz_0$.