Topic 3. Example 8. Determine the vector, parametric and Cartesian equations of the line passing through the points $P=(-1,2,3)$ and $Q=(4,-2,5)$.

Since

$$
\text { the direction of the line is } \quad Q-P=|4,-2,5\rangle-|-1,2,3\rangle=|5,-4,2\rangle
$$

and

$$
P=|-1,2,3\rangle \quad \text { is a point on the line }
$$

then the line is the set of points in \mathbb{R}^{3} given by

$$
\{|-1,2,3\rangle+t \cdot|5,-4,2\rangle \mid t \in \mathbb{R}\}
$$

Parametric equations for the line are

$$
\begin{aligned}
& x=-1+5 t, \\
& y=2-4 t, \quad \text { with } t \in \mathbb{R} . \\
& z=3+2 t
\end{aligned} \quad
$$

Solving for t, the Cartesian equation of the line is

$$
\frac{x+1}{5}=\frac{y-2}{-4}=\frac{z-3}{2}
$$

Topic 3. Example 9. Find a vector equation of the "friendly" line through the point $(2,0,1)$ that is parallel to the "enemy" line

$$
\frac{x-1}{1}=\frac{y+2}{-2}=\frac{z-6}{2}
$$

Does the point $(0,4,-3)$ line on the "friendly" line?
Letting

$$
t=\frac{x-1}{1}=\frac{y+2}{-2}=\frac{z-6}{2}
$$

gives

$$
\begin{aligned}
& x=1+t, \\
& y=-2-2 t, \quad \text { with } t \in \mathbb{R}, \text { and } \quad\{(1,-2,6)+t((1,-2,2) \mid t \in \mathbb{R}\} \\
& z=6+2 t
\end{aligned}
$$

is the set of points in \mathbb{R}^{3} that lie on the "enemy" line.
The "friendly" line we want is parallel to the "enemy" line and consists of the points

$$
\{|2,0,1\rangle+t|1,-2,2\rangle \mid t \in \mathbb{R}\}
$$

Since $|2,0,1\rangle+(-2) \cdot|1,-2,2\rangle=|0,4,-3\rangle$ then $|0,4,-3\rangle$ is on the "friendly' line.

