Topic 3. Example 6. Find the area of the triangle in \mathbb{R}^{3} with vertices $|2,-5,4\rangle,|3,-4,5\rangle$ and $|3,-6,2\rangle$. Letting

$$
u=|3,-4,5\rangle-|2,-5,4\rangle=|1,1,1\rangle \quad \text { and } \quad v=|3,-6,2\rangle-|2,-5,4\rangle=|1,-1,2\rangle
$$

and, using that $u \times v=|-1,3,-2\rangle$ (from Topic 3 Example 5), gives

$$
(\text { Area of triangle })=\frac{1}{2}\|u \times v\|=\frac{1}{2} \||-1,3,-2\rangle \|=\frac{1}{2} \sqrt{(-1)^{2}+3^{2}+(-2)^{2}}=\frac{\sqrt{14}}{2}
$$

Topic 3. Example 7. Find the volume of the parallelipiped with adjacent edges $\overrightarrow{P Q}, \overrightarrow{P R}, \overrightarrow{P S}$, where $P=|2,0,-1|, Q=|4,1,0\rangle, R=|3,-1,1\rangle$ and $S=|2,-2,2\rangle$. Since

$$
\overrightarrow{P Q}=P-Q=|2,1,1\rangle, \quad \overrightarrow{P R}=P-R=|1,-1,2\rangle, \quad \overrightarrow{P S}=P-S=|0,-2,3\rangle
$$

then

$$
\begin{aligned}
\text { (Volume of parallelipiped) } & =|\langle P-Q,(P-R) \times(P-S)\rangle|=\left|\operatorname{det}\left(\begin{array}{ccc}
2 & 1 & 1 \\
1 & -1 & 2 \\
0 & -2 & 3
\end{array}\right)\right| \\
& =\left|2 \cdot \operatorname{det}\left(\begin{array}{ll}
-1 & 2 \\
-2 & 3
\end{array}\right)-\operatorname{det}\left(\begin{array}{cc}
1 & 1 \\
-2 & 3
\end{array}\right)\right| \\
& =|2(-3+4)-(3+2)|=|-3|=3 .
\end{aligned}
$$

