Topic 3. Example 5. Find a vector perpendicular to both $|1,1,1\rangle$ and $|1,-1,-2\rangle$.
By definition of the cross product

$$
|1,1,1\rangle \times|1,-1,-2\rangle=|1 \cdot(-2),-1 \cdot(-1),-(1 \cdot(-2)-1 \cdot 1), 1 \cdot(-1)-1 \cdot 1\rangle=|-1,3,-2\rangle
$$

The vector $|-1,3,-2\rangle$ is perpendicular to both $|1,1,1\rangle$ and $|1,-1,-2\rangle$ since

$$
\langle-1,3,-2 \mid 1,1,1\rangle=-1+3-2=0 \quad \text { and } \quad\langle-1,3,-2 \mid 1,-1,-2\rangle=-1-3+4=0
$$

An even better way to answer this question is to find all vectors $|a, b, c\rangle$ that are perpendicular to both $|1,1,1\rangle$ and $|1,-1,-2\rangle$. These are the vectors $|a, b, c\rangle$ such that

$$
\begin{aligned}
& \langle a, b, c \mid 1,1,1\rangle=0, \\
& \langle a, b, c \mid 1,-1,-2\rangle=0,
\end{aligned} \quad \text { so that } \quad l \begin{aligned}
& a+b+c=0 \\
& a-b-2 c=0
\end{aligned}
$$

In matrix form these equations are

$$
\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & -1 & -2
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\binom{0}{0}
$$

Multiplying both sides by $\left(\begin{array}{cc}0 & 1 \\ 1 & -1\end{array}\right)$ gives

$$
\left(\begin{array}{ccc}
1 & -1 & -2 \\
0 & 2 & 3
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\binom{0}{0}
$$

Multiplying both sides by $\left(\begin{array}{ll}1 & 0 \\ 0 & \frac{1}{2}\end{array}\right)$ gives

$$
\left(\begin{array}{ccc}
1 & -1 & -2 \\
0 & 1 & \frac{3}{2}
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\binom{0}{0}
$$

Multiplying both sides by $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ gives

$$
\left(\begin{array}{ccc}
1 & 0 & -\frac{1}{2} \\
0 & 1 & \frac{3}{2}
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\binom{0}{0}
$$

So

$$
\begin{aligned}
a-\frac{1}{2} c & =0, \\
b+\frac{3}{2} c & =0,
\end{aligned} \quad \text { which gives } \quad \begin{aligned}
& a=\frac{1}{2} c \\
& b=-\frac{3}{2} c \\
& c=c
\end{aligned}
$$

So the vectors $|a, b, c\rangle$ that are perpendicular to both $|1,1,1\rangle$ and $|1,-1,-2\rangle$ are the vectors in

$$
\operatorname{span}\left\{\left(\begin{array}{c}
\frac{1}{2} \\
-\frac{3}{2} \\
1
\end{array}\right)\right\}=\left\{\left.t \cdot\left|\frac{1}{2},-\frac{3}{2}, 1\right\rangle \right\rvert\, t \in \mathbb{R}\right\}
$$

