
Linear algebra notes, Arun Ram August 7, 2023

Topic 3. Example 5. Find a vector perpendicular to both |1, 1, 1i and |1,�1,�2i.
By definition of the cross product

|1, 1, 1i ⇥ |1,�1,�2i = | 1 · (�2),�1 · (�1),�(1 · (�2)� 1 · 1), 1 · (�1)� 1 · 1 i = |� 1, 3,�2i.

The vector |� 1, 3,�2i is perpendicular to both |1, 1, 1i and |1,�1,�2i since

h�1, 3,�2 | 1, 1, 1i = �1 + 3� 2 = 0 and h�1, 3,�2 | 1,�1,�2i = �1� 3 + 4 = 0.

An even better way to answer this question is to find all vectors |a, b, ci that are perpendicular to
both |1, 1, 1i and |1,�1,�2i. These are the vectors |a, b, ci such that

ha, b, c|1, 1, 1i = 0,
ha, b, c|1,�1,�2i = 0,

so that
a+ b+ c = 0,
a� b� 2c = 0.

In matrix form these equations are
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So

a� 1
2c = 0,

b+ 3
2c = 0,

which gives
a = 1

2c,
b = �3

2c,
c = c

So the vectors |a, b, ci that are perpendicular to both |1, 1, 1i and |1,�1,�2i are the vectors in
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