Topic 3. Example 13. Find a vector form for the line of intersection of the two planes $x+3 y+2 z=6$ and $3 x+2 y+z=11$.
The points on the intersection of the two planes are the points $|x, y, z\rangle$ that satisfy the system of equations

$$
\begin{aligned}
& 3 x+2 y-z=11 \\
& x+3 y+2 z=6
\end{aligned}
$$

In matrix form these equations are

$$
\left(\begin{array}{ccc}
3 & 2 & -1 \\
1 & 3 & 2
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\binom{11}{6}
$$

Multiply both sides by $\left(\begin{array}{cc}0 & 1 \\ 1 & -3\end{array}\right)$ to get

$$
\left(\begin{array}{ccc}
1 & 3 & 2 \\
0 & -7 & -7
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\binom{6}{-7}
$$

Multiply both sides by $\left(\begin{array}{cc}1 & 0 \\ 0 & -\frac{1}{7}\end{array}\right)$ to get

$$
\left(\begin{array}{lll}
1 & 3 & 2 \\
0 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\binom{6}{1}
$$

Multiply both sides by $\left(\begin{array}{cc}1 & -3 \\ 0 & 1\end{array}\right)$ to get

$$
\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\binom{3}{1}
$$

So

$$
\begin{aligned}
& x-z=3, \\
& y+z=1,
\end{aligned} \quad \text { giving } \quad \begin{aligned}
& x=3+z \\
& y=1-z \\
& z=0+z
\end{aligned}
$$

where z can be any element of \mathbb{R}. So the solutions to these equations are

$$
\left.\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
3 \\
1 \\
0
\end{array}\right)+\operatorname{span}\left\{\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right)\right\} \quad \text { which is the line } \quad\{\mid 3,1,0)+t|1,-1,1| \mid t \in \mathbb{R}\right\}
$$

as the line of intersection of the two planes.

