Topic 3. Example 10. Find the Cartesian equation of the plane with vector form

$$
|x, y, z\rangle=s|1,-1,0\rangle+t|2,0,1\rangle+|-1,1,1\rangle, \quad \text { with } s, t \in \mathbb{R}
$$

A normal vector to this plane is

$$
n=u \times v, \quad \text { where } u=|1,-1,0\rangle \text { and } v=|2,0,1\rangle
$$

Then $u \times v=|-1-0,-(1-0), 0-(-2)\rangle=|-1,-1,2\rangle$, and $|-1,1,1\rangle$ is a point in the plane, and

$$
\langle-1,1,1 \mid u \times v\rangle=\langle-1,1,1 \mid-1,-1,2\rangle=1-1+2=2 .
$$

Since the plane is $|-1,1,1\rangle+\left\{|x, y, z\rangle \in \mathbb{R}^{3} \mid\langle x, y, z \mid-1-1,2\rangle=0\right\}$ then the Cartesian equation of the plane is

$$
-x-y+2 z=2
$$

Topic 3. Example 11. Find the vector equation for the plane in \mathbb{R}^{3} containing the points $P=|1,0,2\rangle$ and $Q=|1,2,3\rangle$ and $R=|4,5,6\rangle$.

The point $|1,0,2\rangle$ is in the plane and two vectors in the plane are

$$
Q-P=|0,2,1\rangle \quad \text { and } \quad R-P=|3,5,4\rangle
$$

So the points in the plane are the points $|x, y, z\rangle$ in \mathbb{R}^{3} which satisfy

$$
|x, y, z\rangle=|1,0,2\rangle+s|0,2,1\rangle+t|3,5,4\rangle \quad \text { with } s, t \in \mathbb{R}
$$

Topic 3. Example 12. Where does the line

$$
\frac{x-1}{1}=\frac{y-2}{2}=\frac{z-3}{3}
$$

intersect the plane $3 x+2 y+z=20$?
The line in parametric form is

$$
\begin{aligned}
& x=1+t \\
& y=2+2 t, \quad \text { with } t \in \mathbb{R} \\
& z=3+3 t
\end{aligned}
$$

and plugging into the equation of the plane gives

$$
20=3(t+1)+2(2 t+2)+(3 t+3)=10 t+10 \quad \text { so that } \quad t=1
$$

Thus the point $|x, y, z\rangle$ with $x=1+1=2, y=2+2=4$ and $z=3+3$ is on both the line and the plane.

