8.4 Determinants and volumes

(Lengths of segments in \mathbb{R}) Let P be the segment with vertices $|0\rangle$ and $|u_1\rangle$. Show that

(Length of segment
$$P$$
) = $|\det(u_1)|$. *PICTURE* (lengthdet)

(Areas of parallelograms in \mathbb{R}^2) Let P be the parallelogram with vertices (0,0), (v_1, v_2) , (w_1, w_2) and $(v_1 + w_1, v_2 + w_2)$. Show that

$$(\text{Area of } P) = \left| \det \begin{pmatrix} v_1 & v_2 \\ w_1 & w_2 \end{pmatrix} \right|. \qquad PICTURE \qquad (\text{areadet})$$

(Volumes of parallelipipeds \mathbb{R}^3) Let P be the parallelipiped with vertices (0, 0, 0), (u_1, u_2, u_3) , (v_1, v_2, v_3) , (w_1, w_2, w_3) , $(u_1 + v_1, u_2 + v_2, u_3 + v_3)$, $(u_1 + w_1, u_2 + w_2, u_3 + w_3)$, $(v_1 + w_1, v_2 + w_2, v_3 + w_3)$ and $(u_1 + v_1 + w_1, u_2 + v_2 + w_2, u_3 + v_3 + w_3)$. Show that

(Volume of parallelpiped
$$P$$
) = $\left| \det \begin{pmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{pmatrix} \right|$. PICTURE (volumedet)

Let's explain why this works. Let E_{ij} be the 3×3 matrix with 1 in the (i, j) entry and 0 elsewhere. Let $1 = E_{11} + E_{22} + E_{33}$,

$$s_{ij} = 1 - E_{ii} - E_{jj} + E_{ij} + E_{ji}, \qquad \text{for } i, j \in \{1, \dots, 3\} \text{ with } i \neq j,$$

$$x_{ij}(c) = 1 + cE_{ji}, \qquad \text{for } i, j \in \{1, \dots, 3\} \text{ with } i \neq j \text{ and } c \in \mathbb{R},$$

$$d_i(c) = 1 + (c-1)E_{ii}, \qquad \text{for } i \in \{1, \dots, 3\} \text{ and } c \in \mathbb{R} \text{ with } c \neq 0.$$

Consider the volume of the parallelipiped as a function of the edge vectors $u = |u_1, u_2, u_3\rangle$, $v = |v_1, v_2, v_3\rangle$ and $w = |w_1, w_2, w_3\rangle$.

$$\operatorname{Vol}(u, v, w) = \operatorname{Vol}\begin{pmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{pmatrix} = \operatorname{Vol}(P), \quad \text{where} \quad P = \begin{pmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{pmatrix}.$$

Since switching two edges produces the same parallelipiped then

$$\operatorname{Vol}(s_{ij}P) = \operatorname{Vol}(P)$$

Since stretching one of the edges of the parallelipped by a factor of c changes the volume by a factor of c then

$$\operatorname{Vol}(d_{ij}(c)P) = c \cdot \operatorname{Vol}(P).$$
 PICTURE

Since area of a parallelgram is always (base) \cdot (height) then

$$\operatorname{Vol}(x_{ij}(c)P) = \operatorname{Vol}(P).$$
 PICTURE

It follows that Vol(P) can be computed by writing P as a product of elementary matrices and using

$$Vol(s_{ij}) = 1$$
, $Vol(d_i(c)) = c$, $Vol(x_{ij}(c)) = 1$.

Thus the volume of P is the absolute value of the determinant of P,

$$\operatorname{Vol}(P) = |\det(P)|.$$