8.4 Determinants and volumes

(Lengths of segments in \mathbb{R}) Let P be the segment with vertices $|0\rangle$ and $\left|u_{1}\right\rangle$. Show that

$$
(\text { Length of segment } P)=\left|\operatorname{det}\left(u_{1}\right)\right| . \quad \text { PICTU RE }
$$

(Areas of parallelograms in \mathbb{R}^{2}) Let P be the parallelogram with vertices $(0,0),\left(v_{1}, v_{2}\right),\left(w_{1}, w_{2}\right)$ and $\left(v_{1}+w_{1}, v_{2}+w_{2}\right)$. Show that

$$
(\text { Area of } P)=\left|\operatorname{det}\left(\begin{array}{cc}
v_{1} & v_{2} \\
w_{1} & w_{2}
\end{array}\right)\right| . \quad \text { PICTU RE } \quad \text { (areadet) }
$$

(Volumes of parallelipipeds $\left.\mathbb{R}^{3}\right)$ Let P be the parallelipiped with vertices $(0,0,0),\left(u_{1}, u_{2}, u_{3}\right),\left(v_{1}, v_{2}, v_{3}\right)$, $\left(w_{1}, w_{2}, w_{3}\right),\left(u_{1}+v_{1}, u_{2}+v_{2}, u_{3}+v_{3}\right),\left(u_{1}+w_{1}, u_{2}+w_{2}, u_{3}+w_{3}\right),\left(v_{1}+w_{1}, v_{2}+w_{2}, v_{3}+w_{3}\right)$ and $\left(u_{1}+v_{1}+w_{1}, u_{2}+v_{2}+w_{2}, u_{3}+v_{3}+w_{3}\right)$. Show that

$$
(\text { Volume of paralleipiped } P)=\left|\operatorname{det}\left(\begin{array}{ccc}
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3} \\
w_{1} & w_{2} & w_{3}
\end{array}\right)\right| . \quad \text { PICTURE }
$$

Let's expalin why this works. Let $E_{i j}$ be the 3×3 matrix with 1 in the (i, j) entry and 0 elsewhere. Let $1=E_{11}+E_{22}+E_{33}$,

$$
\begin{aligned}
s_{i j} & =1-E_{i i}-E_{j j}+E_{i j}+E_{j i}, & & \text { for } i, j \in\{1, \ldots, 3\} \text { with } i \neq j, \\
x_{i j}(c) & =1+c E_{j i}, & & \text { for } i, j \in\{1, \ldots, 3\} \text { with } i \neq j \text { and } c \in \mathbb{R}, \\
d_{i}(c) & =1+(c-1) E_{i i}, & & \text { for } i \in\{1, \ldots, 3\} \text { and } c \in \mathbb{R} \text { with } c \neq 0 .
\end{aligned}
$$

Consider the volume of the parallelipiped as a function of the edge vectors $u=\left|u_{1}, u_{2}, u_{3}\right\rangle, v=$ $\left|v_{1}, v_{2}, v_{3}\right\rangle$ and $w=\left|w_{1}, w_{2}, w_{3}\right\rangle$.

$$
\operatorname{Vol}(u, v, w)=\operatorname{Vol}\left(\begin{array}{ccc}
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3} \\
w_{1} & w_{2} & w_{3}
\end{array}\right)=\operatorname{Vol}(P), \quad \text { where } \quad P=\left(\begin{array}{ccc}
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3} \\
w_{1} & w_{2} & w_{3}
\end{array}\right) .
$$

Since switching two edges produces the same parallelipiped then

$$
\operatorname{Vol}\left(s_{i j} P\right)=\operatorname{Vol}(P) .
$$

Since stretching one of the edges of the parallelipped by a factor of c changes the volume by a factor of c then

$$
\operatorname{Vol}\left(d_{i j}(c) P\right)=c \cdot \operatorname{Vol}(P) . \quad P I C T U R E
$$

Since area of a parallelgram is always (base) $\cdot($ height $)$ then

$$
\operatorname{Vol}\left(x_{i j}(c) P\right)=\operatorname{Vol}(P) . \quad \text { PICTURE }
$$

It follows that $\operatorname{Vol}(P)$ can be computed by writing P as a product of elementary matrices and using

$$
\operatorname{Vol}\left(s_{i j}\right)=1, \quad \operatorname{Vol}\left(d_{i}(c)\right)=c, \quad \operatorname{Vol}\left(x_{i j}(c)\right)=1
$$

Thus the volume of P is the absolute value of the determinant of P,

$$
\operatorname{Vol}(P)=|\operatorname{det}(P)| .
$$

