Topic 2. Examples 1 and 2. The graph

Then

$$
A^{3}=A\left(A^{2}\right)=\left(\begin{array}{lllll}
0 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 & 0
\end{array}\right)\left(\begin{array}{lllll}
2 & 1 & 1 & 2 & 1 \\
1 & 4 & 1 & 2 & 2 \\
1 & 1 & 2 & 1 & 2 \\
2 & 2 & 1 & 3 & 1 \\
1 & 2 & 2 & 1 & 3
\end{array}\right)=\left(\begin{array}{lllll}
2 & 6 & 3 & 3 & 5 \\
6 & 6 & 6 & 7 & 7 \\
3 & 6 & 2 & 5 & 3 \\
3 & 7 & 5 & 4 & 7 \\
5 & 7 & 3 & 7 & 4
\end{array}\right)
$$

Topic 2. Example 3.

$$
\text { Let } \quad A=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right) . \quad \text { Then } \quad A^{t}=\left(\begin{array}{ll}
1 & 4 \\
2 & 5 \\
3 & 6
\end{array}\right) \text {. }
$$

Topic 2. Example 4.

$$
\text { If } \quad A=\left(\begin{array}{cc}
2 & -1 \\
1 & 1
\end{array}\right) \quad \text { then } \quad A^{-1}=\frac{1}{3}\left(\begin{array}{cc}
1 & 1 \\
-1 & 2
\end{array}\right)
$$

since $\frac{1}{3}\left(\begin{array}{cc}1 & 1 \\ -1 & 2\end{array}\right)\left(\begin{array}{cc}2 & -1 \\ 1 & 1\end{array}\right)=\frac{1}{3}\left(\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right)=1$ and

$$
\left(\begin{array}{cc}
2 & -1 \\
1 & 1
\end{array}\right) \frac{1}{3}\left(\begin{array}{cc}
1 & 1 \\
-1 & 2
\end{array}\right)=\left(\begin{array}{cc}
2 & -1 \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
\frac{1}{3} & \frac{1}{3} \\
-\frac{1}{3} & \frac{2}{3}
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=1
$$

The normal form for A is

$$
A=\left(\begin{array}{cc}
2 & -1 \\
1 & 1
\end{array}\right)=y_{1}(2)\left(\begin{array}{cc}
1 & 1 \\
0 & -3
\end{array}\right)=y_{1}(2) d(1,-3)\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)=y_{1}(2) d(1,-3) x_{12}(1) \cdot 1_{2}
$$

and $\operatorname{det}(A)=(-1) \cdot 1 \cdot 3 \cdot 1=-3$ and $\operatorname{rank}(A)=2$.

