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26 Appendix: “Proof machine”

This section is the salvation for a student of mathematics.

26.1 Andante cantabile
26.1.1 Memories

It was in the second semester of my undergraduate education at MIT that I first met pure mathe-
matics, open and closed sets, the book “Baby Rudin”, and Warren Ambrose. The course was ‘18.100
Mathematical Analysis’. Warren Ambrose had a great effect on me. Somehow we had a one-to-one
conversation where we both confessed that our true love was music and that we were doing math only
as a backup. At the time, I was still far from being a professional mathematician and he was a famous
geometer nearing the end of his career and his life (it was 1984 and he died in 1995 at the age of 81).
He told me that he had been a jazz trumpet player but an accident had made him unable to play
properly and so he had pursued mathematics for a profession. His exams (two midterm exams and a
final) were all 24 hour open-book closed-friend take-home tests: 10 questions, true or false, graded 1 if
correct, -1 if incorrect, and 0 if not answered. The average score across the class (about 20 students)
was often around 0. But this mechanism taught you better than any other what proof meant — if
you were unable to provide a proof you believed in then you risked getting -1 for that question. The
questions were always very interesting. I carried those questions around for years until sometime in
2012 when I accidentally left them in a classroom and, when I came back to find them an hour later,
they were gone.

26.1.2 Assume the Ifs and To show the Thens: “Proof machine”

The first courses I had that required me to start constructing proofs (Mathematical Analysis, Abstract
algebra, Topology) were tough for me. I couldn’t figure out the magic trick that made some people
able to do this. By the time I started graduate school I still hadn’t figured out this magic and I thought
it likely that without it it would be impossible for me to succeed in obtaining a PhD in mathematics.
On the other hand I began to notice that, in combinatorics particularly, if I knew that I could make
some bijection or other then I was absolutely sure that I could make it and there was something more
than just wishy-washy hand waving that I was doing to have this certainty. I was just starting to get
the hang of it.

It was when I was a postdoc that I realized that most of mathematics is just mechanical work,
and the bright ideas that are needed are few and far between. This gave me confidence as I was sure
that I had the diligence and endurance to do mechanical work, and I was also pretty certain that if
any actual “talent” was going to be required then I wasn’t going to be a successful mathematician.

Just at that moment I got assigned to teach the undergraduate Abstract Algebra course (at Univ.
of Wisconsin-Madison) and so I needed to figure out how to explain to my students how they too
could do the necessary proofs. That was the catalyst for me to formulate the mechanism that I now
call “proof machine”.

As I have progressed in a career as a professional research mathematician I have been amazed to
observe how many times “proof machine” has saved me, provided the direction, guided me to where
I might have to think, clarified where I didn’t need to waste effort thinking, provided the proof and
protected me from making mistakes.

“Proof machine” was also the key that unlocked the mysterious world of writing and changed
me from a teenager who hated English class, any kind of writing and especially term papers, into a
versatile writer (at least in the cases when I do the writing carefully and thoroughly and with the
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same structural framework that I use when I do a proof in “proof machine” in mathematics). I am
always struck by how helpful “proof machine” is for getting out good writing (letters, reports, reviews,
papers, memos, emails, etc).

I am continually amazed at how useful “proof machine” is in my daily life and meetings, in helping
me be organised and efficient, helping me to get to the core of the issue as necessary, and helping me
to optimize impact and productivity for effort expended. “Proof machine” is a skill (not a talent)
which is learned by practice (and more practice and more practice) in the same way that one develops
skill and facility on a musical instrument by lots of practice.

My hope is that I can teach “proof machine” to as many of my students as I can so that they can
also benefit from this wonderful tool in their lives and careers. After all, it is really easy: To prove “If
A then B”, Assume the ifs and To show the thens, and that’s about all there is to it. The rest is just
practice.
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26.2 The grammar of mathematics

e Definitions are the foundation of mathematics.
e Theorems are the landmarks of mathematics.
e Proofs are the explanation of mathematics.

Learning to read, write and speak mathematics is a skill that anyone can learn. Like all languages, it
requires lots of practice to use it fluently.
Like all languages, the grammar of quality mathematical communication is very rigid.

It is impossible to prove a statement without being able to write down the definitions of all the terms
in the statement.
The grammar of a definition is:

A noun iS a Such that Let IF be field and let V and W be F-vector spaces.
A linear transformation from V to W is a function f: V — W
such that
(a) If _  then _ , and (a) If vi,vz €V then f(vi +w2) = f(v1)+ f(v2),
(b) If then and (b) If c€F and v € V then f(cv) = cf(v).
- P
(c) If then , and ...

An adjective is most conveniently defined by putting it in the form of a noun:

A adjective noun is a noun such that An injective function is a function f: S — T such that
(a) If sj,sp € S and s; # so then f(sy1) # f(s2).
(a) If then , and
(b) If then , and
(c) If then , and ...

Sometimes definitions of adjectives take the form:

Let S be a noun. Let f: S — T be a function.

. . . . . . A function f: S — T is injective if f satisfies
A noun S is adjective if S satisfies
_— (a) If sy,sp €S and sy # s then f(s1) # f(s2).

(a) If then , and
(b) If then , and
(c) If then , and ...

The words “let” and “assume” are synonyms for “if”. The grammar of a lemma, proposition or
theorem (or any other statement) is:

If then

Two special constructions in mathematical language are:
There exists such that .

and

There exists a unique such that

252



Linear algebra notes, Arun Ram July 29, 2023

26.3 How to do Proofs: “Proof Machine”

There is a certain “formula” or method to doing proofs. Some of the guidelines are given below. The
most important factor in learning to do proofs is practice, just as when one is learning a new language.

1. There are very few words needed in the structure of a proof. Organized in rows by synonyms
they are:

To show

Assume, Let, Suppose, Define, If
Since, Because, By

Then, Thus, So

There exists, There is

Recall, We know, But

Do not use ‘for all’ or ‘for each’. These can always be replaced by ‘if’ to achieve greater
clarity, accuracy and efficiency.

Do not use the phrase ‘for some’. It can always be replaced by ‘There exists’ to achieve
greater clarity, accuracy and efficiency.

2. The overall structure of a proof is a block structure like an outline. For example:

To show: If A then B and C

Assume: A

[itemsep=-0.2em]
To show: (a) B

() C
(a) To show: B
Thus B .
(b) To show: C
Thus C

So B and c .
So, if A then B and C

3. Any proof or section of proof begins with one of the following:

(a) To show: If A then _ B
(b) To show: There exists _ C  such that _ D
(¢c) To show: E

4. Immediately following this, the next step is
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Case (a) Assume the ifs and ‘To show’ the thens. The next lines are

o Assume A
o To show: B

Case (b) To show an object exists you must find it. The next lines are

o Define XXX =

o To show: xxx  satisfies _ D
Case (c) Rewrite the statement in __E by using a definition. The next line is
o To show: _ F

There are some kinds of proofs which have a special structure.

(E) Proofs of equality: LHS=RHS.

To show: A=B .
Left Hand Side: A=

expression

Right Hand Side: B= ...

= THE SAME expression

(F) Counterexamples: Proofs of falseness

To show that a statement, “If then 7, is false you must give an example.

To show: There exists a _ xxx such that
(a) xxx satisfies the ifs of the statement that you are showing is false,

(a) xxx satisfies the opposite of some assertion in the thens of the statement that you are
showing is false.

(U) Proofs of uniqueness.

To show that an object is unique you must show that if there are two of them then they are
really the same.

To show: A THING is unique.

Assume X; and X5 are both THINGs.
To show: X1 = XQ.
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(I) Proofs by induction.

A statement to be proved by induction must have the form

If n is a positive integer then _ A

The proof by induction should have the form

Proof by induction.
Base case:
To show: If n=1 then A

Thus, if n =1 then A

Induction step:

Let ¢ be a positive integer and assume that if n is a positive integer and n <
{ then _ A

To show: A

The mechanics of proof by induction is an unwinding of the definition of Zg.

(CP) Proofs by contrapositive.

To show: If A then B
To show: If not B then not A .

(BAD) Proofs by contradiction.

(*) Assume the opposite of what you want to show.

End up showing the opposite of some assumption (not necessarily the (*) assumption).
Contradiction to specify exactly what assumption is being contradicted.
Thus assumption (*) is wrong and what you want to show is true.

PROOFS BY CONTRADICTION ARE STRONGLY DISCOURAGED. In all known
cases they can be replaced by a proof by contrapositive for greater clarity, direction
and efficiency.
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26.4 Example proofs

The following example proofs have been chosen because they are results that are often assumed, are
needed for many topics in algebra and analysis and topology and are rarely proved carefully in an
undergraduate curriculum; facts like, if @ # 0 then a? > 0. These often seem “obvious”, until you
meet that first example, like a field witih 5 elements, where 2 # 0 and 22 = —1. After getting over
the initial shock, then one begins to wonder why such a fact might ever be true, and how it might be
proved when it is. It is proved in Proposition b)7 below.

26.4.1 An inverse function to f exists if and only if f is bijective.

Theorem 26.1. Let f: S — T be a function. The inverse function to f exists if and only if f is
bijective.

Proof.

=: Assume f: S — T has an inverse function f~': T — S.
To show: (a) f is injective.

(b) f is surjective.

(a) Assume s1,s2 € S and f(s1) = f(s2).
To show: s1 = s9.
s1= [ f(s1)) = fH f(s2) = sa.
So f is injective.
(b) Let t € T.
To show: There exists s € S such that f(s) = t.
Let s = f~1(t).
Then

So f is surjective.

So f is bijective.
<: Assume f: S — T is bijective.
To show: f has an inverse function.
We need to define a function ¢: T — S.
LetteT.
Since f is surjective there eists s € S such that f(s) = t¢.
Define ¢(t) = s.
To show: (a) ¢ is well defined.
(b) ¢ is an inverse function to f.

(a) To show: (aa) If t € T then p(t) € S.
(ab) If t1,to € T and t; = t9 then gD(tl) = (p(tz).

(aa) This follows from the definition of ¢.
(ab) Assume t1,t2 € T and t1 = to.
Let s1,s2 € S such that f(s1) =t and f(s2) = to.
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Since t; = to then f(s1) = f(s2).
Since f is injective this implies that s; = s9.
So p(t1) = s1 = s2 = @(t2).
So ¢ is well defined.
(b) To show: (ba) If s € S then ¢(f(s)) =s.
(bb) If t € T then f(p(t)) = t.

(ba) This follows from the definition of .
(bb) Assume t € T.
Let s € S be such that f(s) =t.
Then

fle() = f(s) =t
So po f and f o are the identity functions on S and T, respectively.

So ¢ is an inverse function to f.

26.4.2 An equivalence relation on S and a partition of S are the same data.
Let S be a set.

e A relation ~ on S is a subset R, of S x S. Write s1 ~ sg if the pair (s, s2) is in the subset R~
so that
R. ={(s1,52) € S x S| s1~ s2}.

e An equivalence relation on S is a relation ~ on S such that

(a) if s € S then s ~ s,
(b) if 51,82 € S and s1 ~ s then s9 ~ 57,
(c) if s1,82,83 € S and s1 ~ s9 and sy ~ s3 then s1 ~ s3.

Let ~ be an equivalence relation on a set S and let s € S. The equivalence class of s is the set
[s]={te S|t~ s}
A partition of a set S is a collection P of subsets of S such that

(a) If s € S then there exists P € P such that s € P, and
(b) If P,,Po ¢ Pand PPN P 75 0 then P = Ps.

Theorem 26.2.

(a) If S is a set and let ~ be an equivalence relation on S then
the set of equivalence classes of ~ s a partition of S.
(b) If S is a set and P is a partition of S then
the relation defined by s~t ifs andt are in the same P € P

is an equivalence relation on S.

Proof.
(a) To show: (aa) If s € S then s is in some equivalence class.
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(ab) If [s] N [t] # 0 then [s] = [t].

(aa) Let s € S.
Since s ~ s then s € [s].
(ab) Assume [s] N [t] # 0.
To show: [s] = [t].
Since [s] N [t] # 0 then there is an r € [s] N [¢].
So s ~rand r ~t.
By transitivity, s ~ t.
To show: (aba) [s] C [t].
(abb) [t] C [s].
(aba) Assume u € [s].
Then u ~ s.
We know s ~ t.
So, by transitivity, u ~ t.
Therefore u € [t].
So [s] C [t].
(aba) Assume v € [t].
Then v ~ t.
We know ¢ ~ s.
So, by transitivity, v ~ s.
Therefore v € [s].

So [t] C [s].
So [s] = [t].
So the equivalence classes partition S.
(b) To show: ~ is an equivalence relation, i.e. that ~ is reflexive, symmetric and transitive.
To show: (ba) If s € S then s ~ s.
(bb) If s ~ ¢ then t ~ s.
(be) If s ~t and t ~ u then s ~ w.

(ba) Since s and s are in the same S, then s ~ s.
(bb) Assume s ~ t.

Then s and ¢ are in the same S,.

Sot~s.
(bb) Assume s ~ t and t ~ u.

Then s and t are in the same S, and ¢ and u are in the same S,,.
So s ~ u.

So ~ is an equivalence relation.

26.4.3 Identities in a field
A field is a set F with functions

FxF — F and FxF — F
(a,b) — a+b t (a,b) — ab

such that
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(Fa) If a,b,c € F then (a+b)+c=a+ (b+ ),
(Fb) If a,b € F then a+b = b+ a,
(Fc) There exists 0 € F such that

ifaelF then O0+a=aanda+0=a,

(Fd) If a € F then there exists —a € F such that a + (—a) = 0 and (—a) + a =0,
(Fe) If a,b,c € F then (ab)c = a(bc),
(Ff) If a,b,c € F then

(a+ b)c = ac+ bc and c(a+b) = ca+ cb,

(Fg) There exists 1 € F such that
ifaeF then l-a=aanda-1=a,

(Fh) If a € F and a # 0 then there exists a~! € F such that aa=! =1 and a~ta = 1,
(Fi) If a,b € F then ab = ba.

Proposition 26.3. Let F be a field.
(a) If a € F then a-0=0.

(b) Ifa € F then —(—a) = a.

(c) Ifa €F and a # 0 then (a=1)~! = a.
(d) If a € F then a(—1) = —a.
(e) If a,b € F then (—a)b = —ab.
(f) If a,b € F then (—a)(—b) = ab.

Proof.
(a) Assume a € F.

a-0=a-(0+0), by (Fc),
=a-0+4+a-0, by (Ff).

Add —a -0 to each side and use (Fd) to get 0 = a - 0.
(b) Assume a € F.
By (Fd),

Add —a to each side and use (Fd) to get —(—a) = a.
(c) Assume a € F and a # 0.
By (Fh),
@ Htat=1=a-a"".

Multiply each side by a and use (Fh) and (Fg) to get (a=1)~! = a.
(d) Assume a € F.
By (Ff),
a(-1)+a-1=a(-1+1)=a-0=0,

where the last equality follows from part (a).
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So, by (Fg), a(—1) +a = 0.
Add —a to each side and use (Fd) and (Fc) to get a(—1) = —a.
(e) Assume a,b € F.

(—a)b+ab=(—a+a)b, by (Ff),
=0, by part (a).

Add —ab to each side and use (Fd) and (Fc) to get (—a)b = —ab.
(f) Assume a,b € F.

26.4.4 Identities in an ordered field

An ordered field is a field F with a total order < such that
(OFa) If a,b,c € Fand a <bthena+c<b+ec,
(OFDb) If a,b € F and @ > 0 and b > 0 then ab > 0.

Proposition 26.4. Let F be an ordered field.

(a) If a € F and a > 0 then —a < 0.

(b) If a € F and a # 0 then a® > 0.

(¢) 1>0.

(d) Ifa €F and a > 0 then a™! > 0.

(e) If a,b € F anda >0 and b >0 then a+b > 0.
(f) Ifa,b €F and 0 < a < b then b= < a™ L.

Proof.

(a) Assume a € F and a > 0.
Then a + (—a) > 0+ (—a), by (OFb).
So 0> —a, by (Fd) and (Fc).
(b) Assume a € F and a # 0.
Case 1: a > 0.
Then a-a > a-0, by (OFD).
So a? >0, by part (a).
Case 2: a < 0.
Then —a >0, by part (a).
Then (—a)? >0, by Case 1.
So a®> >0, by Proposition (f).
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()
(d)

To show: 1 > 0.

1=12>0, by part (b).

Assume a € F and a > 0.

By part (b), a=2 = (a71)2 > 0.

Soa(a™)? >a-0, by (OFb).

Soa=!>0, by (Fh)and Proposition (a).
Assume a,b € F and a > 0 and b > 0.

a+b>0+b, by (OFa),
>0+0, by (OFa),
=0, by (Fc).

Assume a,b € F and 0 < a < b.
Soa>0andb>0.

Then, by part (d), = > 0 and b~! > 0.
Thus, by (OFb), a=1b=! > 0.

Since a < b, then b —a >0, by (OFa).
So, by (OFb), a 'b=1(b—a) > 0.

So, by (Fh), a~'—b"1>0.

So, by (OFa), a=! >y~ 1.

Proposition 26.5. Let F be an ordered field and let x,y € F with x > 0 and y > 0. Then

x <y if and only if z? <2

Proof. Assume z,y € S and x > 0 and y > 0.
To show: (a) If 2 < y then 22 < y2.

(b)

(b) If 22 < y? then z < y.

Assume 22 < 3.

Adding (—2?) to each side and using (OFa) gives y? + (—?) > 2% + (—2?%) = 0.
So y? —x2 > 0.

Using Proposition e) and axioms (Ff) and (Fi),

(y—2)(y+2)=yy+ (—2)y +yz + (—x)z = y* + (—2y) + 2y + (—ax)
2

=92 +0—2%=y?— 2%
So (y —z)(y +z) > 0.
By Proposition e) and Proposition (d),
sincex >0andy > 0thenz+y >0and (z+%)"' >0 (or =0 and y = 0).
So, by (OFb), (y —z)(y +z)(z +y)~' > 0.
Using (Fg), then y — z > 0.
Adding z to both sides and using (OFa) gives y > z.
Assume y > x.
Then y —z > 0.
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Since y > 0 and x > 0 then, by (OFa), (y+z) >y+ 0=y > 0.
So, by (OFb), (y — z)(y + z) > 0.

So y? — 22 > 0.

So y? > 22,
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