Topic 1. Example 6 (and 5). Let us solve the equation

$$
\left(\begin{array}{ccc}
4 & -2 & 5 \\
2 & -3 & -2 \\
1 & -3 & 2
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
31 \\
13 \\
11
\end{array}\right) .
$$

Let

$$
\begin{gathered}
y_{1}(c)^{-1}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & -c & 0 \\
0 & 0 & 1
\end{array}\right), \quad y_{2}(c)^{-1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & -c
\end{array}\right), \quad 1_{3}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \\
x_{12}(c)^{-1}=\left(\begin{array}{ccc}
1 & -c & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad x_{13}(c)^{-1}=\left(\begin{array}{ccc}
1 & 0 & -c \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad x_{23}(c)^{-1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & -c \\
0 & 0 & 1
\end{array}\right),
\end{gathered}
$$

so that $x_{i j}(c)^{-1}$ has $-c$ in the (i, j) entry, 1 on the diagonal and 0 everywhere else. Let

$$
d\left(c_{1}, c_{2}, c_{3}\right)^{-1}=\left(\begin{array}{ccc}
c_{1}^{-1} & 0 & 0 \\
0 & c_{2}^{-1} & 0 \\
0 & 0 & c_{3}^{-1}
\end{array}\right) \quad \text { be the diagonal matrix with } c_{1}^{-1}, c_{2}^{-1}, c_{3}^{-1}
$$

on the diagonal.
Multiply both sides of the equation by $y_{2}(2)^{-1}$ to get

$$
\left(\begin{array}{ccc}
4 & -2 & 5 \\
1 & -3 & 2 \\
0 & 3 & -6
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
31 \\
11 \\
-9
\end{array}\right)
$$

Multiply both sides by $y_{1}(4)^{-1}$ to get

$$
\left(\begin{array}{ccc}
1 & -3 & 2 \\
0 & 10 & -3 \\
0 & 3 & -6
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
11 \\
-13 \\
-9
\end{array}\right)
$$

Multiply both sides by $y_{2}\left(\frac{10}{3}\right)^{-1}$ to get

$$
\left(\begin{array}{ccc}
1 & -3 & 2 \\
0 & 3 & -6 \\
0 & 0 & 17
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
11 \\
-9 \\
17
\end{array}\right)
$$

Multiply both sides by $\operatorname{diag}(1,3,-17)^{-1}$ to get

$$
\left(\begin{array}{ccc}
1 & -3 & 2 \\
0 & 1 & -2 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
11 \\
-3 \\
1
\end{array}\right)
$$

Multiply both sides by $x_{12}(3)^{-1}$ to get

$$
\left(\begin{array}{ccc}
1 & 0 & -4 \\
0 & 1 & -2 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
2 \\
-3 \\
1
\end{array}\right)
$$

Multiply both sides by $x_{13}(-4)^{-1}$ to get

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & -2 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
6 \\
-3 \\
1
\end{array}\right)
$$

Multiply both sides by $x_{23}(-2)^{-1}$ to get

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
6 \\
-1 \\
1
\end{array}\right), \quad \text { which gives } \quad \begin{aligned}
& x=6 \\
& y=-1 \\
& z=1
\end{aligned}
$$

So

$$
\operatorname{Sol}\left(\left(\begin{array}{ccc}
4 & -2 & 5 \\
2 & -3 & -2 \\
1 & -3 & 2
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
31 \\
13 \\
11
\end{array}\right)\right)=\left\{\left(\begin{array}{c}
6 \\
-1 \\
1
\end{array}\right)\right\}
$$

Remark 10.2. The process of solving the equations has computed

$$
P^{-1}\left(\begin{array}{l}
31 \\
13 \\
11
\end{array}\right)=\left(\begin{array}{c}
6 \\
-1 \\
1
\end{array}\right)
$$

