Topic 1. Examples 2 and 3 and 4. Let us solve the equation

$$
\left(\begin{array}{cc}
2 & -1 \\
1 & 1
\end{array}\right)\binom{x}{y}=\binom{3}{0}
$$

Let

$$
y_{1}(c)^{-1}=\left(\begin{array}{cc}
0 & 1 \\
1 & -c
\end{array}\right) \quad \text { and } \quad d\left(c_{1}, c_{2}\right)^{-1}=\left(\begin{array}{cc}
c_{1}^{-1} & 0 \\
0 & c_{2}^{-1}
\end{array}\right)
$$

Multiply both sides of the equation by $y_{1}(2)^{-1}$ to get

$$
\left(\begin{array}{ll}
1 & 1 \\
0 & 3
\end{array}\right)\binom{x}{y}=\binom{0}{3}
$$

Multiply both sides by $d(1,3)^{-1}$ to get

$$
\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\binom{x}{y}=\binom{0}{1}, \quad \text { which gives } \quad \begin{aligned}
& y=1 \\
& x=0-y=0-1=-1
\end{aligned}
$$

So

$$
\operatorname{Sol}\left(\left(\begin{array}{cc}
2 & -1 \\
1 & 1
\end{array}\right)\binom{x}{y}=\binom{3}{0}\right)=\left\{\binom{-1}{1}\right\}
$$

Let

$$
y_{1}(c)=\left(\begin{array}{cc}
c & 1 \\
1 & 0
\end{array}\right) \quad \text { and } \quad d\left(c_{1}, c_{2}\right)=\left(\begin{array}{cc}
c_{1} & 0 \\
0 & c_{2}
\end{array}\right)
$$

Then

$$
\left(\begin{array}{cc}
2 & -1 \\
1 & 1
\end{array}\right)=y_{1}(2)\left(\begin{array}{cc}
1 & 1 \\
0 & 3
\end{array}\right)=y_{1}(2) d(1,3)\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)=y_{1}(2) d(1,3) x_{12}(1) \cdot 1_{2}
$$

Thus, if

$$
A=\left(\begin{array}{cc}
2 & -1 \\
1 & 1
\end{array}\right) \quad \text { then } \quad A=P \cdot 1_{2}, \quad \text { where } \quad 1_{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

and $P=y_{1}(2) d(1,3) x_{12}(1)$ in $M_{2 \times 2}(\mathbb{Q})$.
Remark 10.1. The process of solving the equation has computed

$$
A^{-1}\binom{3}{0}=P^{-1}\binom{3}{0}=d(1,3)^{-1} y_{1}(2)^{-1}\binom{3}{0}=\binom{-1}{1}
$$

