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Topic 1. Example 11. Let us solve the equation
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Case 1: If 1� 1
3a = 0 and 4� 1

3b 6= 0 then

0

@
3 �6 a
0 1 1� 2

3a
0 0 0

1

A

0

@
x
y
z

1

A =

0

@
b

7� 2
3b

4� 1
3b

1

A gives 0x+ 0y + 0z = 4� 1
3b 6= 0,

and

Sol

0

@

0

@
3 �6 a
0 1 1� 2

3a
0 0 0

1

A

0

@
x
y
z

1

A =

0

@
b

7� 2
3b

4� 1
3b

1

A

1

A = ;.

Case 2: If 1� 1
3a = 0 and 4� 1

3b = 0 then
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Case 3: If 1� 1
3a = 0 and 4� 1

3b = 0 then there is a unique solution.
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In summary,

If 1� 1
3a = 0 and 4� 1

3b 6= 0 then there are no solutions.

If 1� 1
3a = 0 and 4� 1

3b = 0 then there is no restriction on z.

If 1� 1
3a 6= 0 then there is a unique solution.

Alternatively,

If a = 3 and b 6= 12 then there are no solutions.

If a = 3 and b = 12 then there is no restriction on z.

If a 6= 3 then there is a unique solution.

Normal form:
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