Topic 1. Example 11. Let us solve the equation

$$
\left(\begin{array}{lll}
1 & -2 & 1 \\
2 & -3 & 1 \\
3 & -6 & a
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
4 \\
7 \\
b
\end{array}\right)
$$

Let

$$
y_{1}(c)^{-1}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & -c & 0 \\
0 & 0 & 1
\end{array}\right) \quad \text { and } \quad y_{2}(c)^{-1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & -c
\end{array}\right)
$$

Multiply both sides of the equation by $y_{2}\left(\frac{2}{3}\right)^{-1}$ to get

$$
\left(\begin{array}{ccc}
1 & -2 & 1 \\
3 & -6 & a \\
0 & 1 & 1-\frac{2}{3} a
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
4 \\
b \\
7-\frac{2}{3} b
\end{array}\right)
$$

Multiply both sides by $y_{1}\left(\frac{1}{3}\right)^{-1}$ to get

$$
\left(\begin{array}{ccc}
3 & -6 & a \\
0 & 0 & 1-\frac{1}{3} a \\
0 & 1 & 1-\frac{2}{3} a
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
b \\
4-\frac{1}{3} b \\
7-\frac{2}{3} b
\end{array}\right)
$$

Multiply both sides by $y_{2}(0)^{-1}$ to get

$$
\left(\begin{array}{ccc}
3 & -6 & a \\
0 & 1 & 1-\frac{2}{3} a \\
0 & 0 & 1-\frac{1}{3} a
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
b \\
7-\frac{2}{3} b \\
4-\frac{1}{3} b
\end{array}\right)
$$

Case 1: If $1-\frac{1}{3} a=0$ and $4-\frac{1}{3} b \neq 0$ then

$$
\left(\begin{array}{ccc}
3 & -6 & a \\
0 & 1 & 1-\frac{2}{3} a \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
b \\
7-\frac{2}{3} b \\
4-\frac{1}{3} b
\end{array}\right) \quad \text { gives } \quad 0 x+0 y+0 z=4-\frac{1}{3} b \neq 0
$$

and

$$
\text { Sol }\left(\left(\begin{array}{ccc}
3 & -6 & a \\
0 & 1 & 1-\frac{2}{3} a \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
b \\
7-\frac{2}{3} b \\
4-\frac{1}{3} b
\end{array}\right)\right)=\emptyset .
$$

Case 2: If $1-\frac{1}{3} a=0$ and $4-\frac{1}{3} b=0$ then

$$
\left(\begin{array}{ccc}
3 & -6 & a \\
0 & 1 & 1-\frac{2}{3} a \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
b \\
7-\frac{2}{3} b \\
0
\end{array}\right) \quad \text { gives } \quad \begin{aligned}
& y=\left(7-\frac{2}{3} b\right)-\left(1-\frac{2}{3} a\right) z \\
& x=\frac{b}{3}+2 y-\frac{a}{3} z \\
& \\
& \text { no restriction on } z
\end{aligned}
$$

Since $x=\frac{b}{3}+2 y-\frac{a}{3} z=\frac{b}{3}+14-\frac{4}{3} b-\left(2-\frac{4}{3}\right) z-\frac{a}{3} z=(14-b)-z$ then

$$
\text { Sol }\left(\left(\begin{array}{ccc}
3 & -6 & a \\
0 & 1 & 1-\frac{2}{3} a \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
b \\
7-\frac{2}{3} b \\
0
\end{array}\right)\right)=\left(\begin{array}{c}
14-b \\
7-\frac{2}{3} b \\
0
\end{array}\right)+\operatorname{span}\left\{\left(\begin{array}{c}
-1 \\
-\left(1-\frac{2}{3} a\right) \\
1
\end{array}\right)\right\}
$$

Case 3: If $1-\frac{1}{3} a=0$ and $4-\frac{1}{3} b=0$ then there is a unique solution.

In summary,
If $1-\frac{1}{3} a=0$ and $4-\frac{1}{3} b \neq 0$ then there are no solutions.
If $1-\frac{1}{3} a=0$ and $4-\frac{1}{3} b=0$ then there is no restriction on z.
If $1-\frac{1}{3} a \neq 0$ then there is a unique solution.
Alternatively,
If $a=3$ and $b \neq 12$ then there are no solutions.
If $a=3$ and $b=12$ then there is no restriction on z.
If $a \neq 3$ then there is a unique solution.

Normal form:

$$
\begin{aligned}
\left(\begin{array}{ccc}
1 & -2 & 1 \\
2 & -3 & 1 \\
3 & -6 & a
\end{array}\right) & =y_{2}\left(\frac{2}{3}\right)\left(\begin{array}{ccc}
1 & -2 & 1 \\
3 & -6 & a \\
0 & 1 & 1-\frac{2}{3} a
\end{array}\right) \\
& =y_{2}\left(\frac{2}{3}\right) y_{1}\left(\frac{1}{3}\right)\left(\begin{array}{ccc}
3 & -6 & a \\
0 & 0 & 1-\frac{1}{3} a \\
0 & 1 & 1-\frac{2}{3} a
\end{array}\right) \\
& =y_{2}\left(\frac{2}{3}\right) y_{1}\left(\frac{1}{3}\right) y_{2}(0)\left(\begin{array}{ccc}
3 & -6 & a \\
0 & 1 & 1-\frac{2}{3} a \\
0 & 0 & 1-\frac{1}{3} a
\end{array}\right) \\
& =y_{2}\left(\frac{2}{3}\right) y_{1}\left(\frac{1}{3}\right) y_{2}(0) h\left(\frac{1}{3}, 1,1\right)\left(\begin{array}{ccc}
1 & -2 & \frac{a}{3} \\
0 & 1 & 1-\frac{2}{3} a \\
0 & 0 & 1-\frac{1}{3} a
\end{array}\right) \\
& =y_{2}\left(\frac{2}{3}\right) y_{1}\left(\frac{1}{3}\right) y_{2}(0) h\left(\frac{1}{3}, 1,1\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 1-\frac{2}{3} a \\
0 & 0 & 1-\frac{1}{3} a
\end{array}\right) x_{12}(-2) x_{13}\left(\frac{a}{3}\right) \\
& =y_{2}\left(\frac{2}{3}\right) y_{1}\left(\frac{1}{3}\right) y_{2}(0) h\left(\frac{1}{3}, 1,1\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1-\frac{1}{3} a
\end{array}\right) x_{23}\left(1-\frac{2}{3} a\right) x_{12}(-2) x_{13}\left(\frac{a}{3}\right)
\end{aligned}
$$

Thus, if

$$
A=\left(\begin{array}{lll}
1 & -2 & 1 \\
2 & -3 & 1 \\
3 & -6 & a
\end{array}\right) \quad \text { then } \quad A=P 1_{r} Q, \quad \text { where } \quad r= \begin{cases}3, & \text { if } a \neq 3 \\
2, & \text { if } a=3\end{cases}
$$

