Topic 1. Example 10. Let us solve the equation

$$
\left(\begin{array}{cccc}
1 & 1 & 0 & 0 \\
1 & 0 & -1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 1 & 0 & -1
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right)=\left(\begin{array}{c}
10 \\
3 \\
6 \\
1
\end{array}\right)
$$

Multiply both sides by $y_{1}(1)^{-1}$ to get

$$
\left(\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 1 & 0 & -1
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right)=\left(\begin{array}{l}
3 \\
7 \\
6 \\
1
\end{array}\right)
$$

Multiply both sides by $y_{3}(0)^{-1}$ to get

$$
\left(\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right)=\left(\begin{array}{l}
3 \\
7 \\
1 \\
6
\end{array}\right)
$$

Multiply both sides by $y_{2}(1)^{-1}$ to get

$$
\left(\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right)=\left(\begin{array}{l}
3 \\
1 \\
6 \\
6
\end{array}\right)
$$

Multiply both sides by $y_{3}(1)^{-1}$ to get

$$
\left(\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right)=\left(\begin{array}{l}
3 \\
1 \\
6 \\
0
\end{array}\right)
$$

Multiply both sides by $x_{13}(-1)^{-1}$ to get

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right)=\left(\begin{array}{l}
9 \\
1 \\
6 \\
0
\end{array}\right), \quad \text { which gives } \quad \begin{aligned}
& a=9-d \\
& b=1+d \\
& c=6-d \\
& 0 \cdot d=0
\end{aligned}
$$

with no restrictions on d. So

$$
\operatorname{Sol}(A x=b)=\left\{\left.\left(\begin{array}{l}
9 \\
1 \\
6 \\
0
\end{array}\right)+d\left(\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right) \right\rvert\, d \in \mathbb{F}\right\}=\left(\begin{array}{l}
9 \\
1 \\
6 \\
0
\end{array}\right)+\operatorname{span}\left\{\left(\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right)\right\}
$$

Normal form:

$$
\begin{aligned}
\left(\begin{array}{cccc}
1 & 1 & 0 & 0 \\
1 & 0 & -1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 1 & 0 & -1
\end{array}\right) & =y_{1}(1)\left(\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 1 & 0 & -1
\end{array}\right) \\
& =y_{1}(1) y_{3}(0)\left(\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 1
\end{array}\right) \\
& =y_{1}(1) y_{3}(0) y_{2}(1)\left(\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1
\end{array}\right) \\
& =y_{1}(1) y_{3}(0) y_{2}(1) y_{3}(1)\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 0 \\
0 & 0 & -1 \\
0 & 1 \\
0 & 0 & 0 \\
0
\end{array}\right) \\
& =y_{1}(1) y_{3}(0) y_{2}(1) y_{3}(1) x_{13}(-1)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -1 \\
0 & 0 & 1 \\
0 & 0 & 0 \\
0
\end{array}\right) \\
& =y_{1}(1) y_{3}(0) y_{2}(1) y_{3}(1) x_{13}(-1) 1_{3} x_{14}(1) x_{24}(-1) x_{34}(1)=P 1_{3} Q
\end{aligned}
$$

where $P=y_{1}(1) y_{3}(0) y_{2}(1) y_{3}(1) x_{13}(-1)$,

$$
1_{3}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \quad \text { and } \quad Q=\left(\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

In this case

$$
P^{-1}=x_{13}(-1)^{-1} y_{3}(1)^{-1} y_{2}(1)^{-1} y_{3}(0)^{-1} y_{1}(1)^{-1} \quad \text { and } \quad Q^{-1}=\left(\begin{array}{cccc}
1 & 0 & 0 & -1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

and

$$
P^{-1}\left(\begin{array}{c}
10 \\
3 \\
6 \\
1
\end{array}\right)=\left(\begin{array}{l}
9 \\
1 \\
6 \\
0
\end{array}\right) \quad \text { and } \quad \operatorname{Sol}(A x=b)=\left(\begin{array}{l}
9 \\
1 \\
6 \\
0
\end{array}\right)+\operatorname{span}\left\{\left(\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right)\right\}
$$

