4.3 Solutions of systems of linear equations

Using matrix multiplication the system of equations

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
\vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=b_{m}
\end{gathered}
$$

is written in the form

$$
A x=b, \quad \text { where } \quad A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & & & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right) \quad \text { and } \quad b=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right)
$$

Define

$$
\operatorname{Sol}(A x=b)=\left\{x \in \mathbb{F}^{n} \mid A x=b\right\}
$$

The following proposition says that if A is square and invertible then

$$
x=A^{-1} A x=A^{-1} b \quad \text { is the unique solution to the system of equations } A x=b
$$

so that $\operatorname{Sol}(A x=b)$ contains only one element.
Proposition 4.7. Let $A \in M_{m \times n}(\mathbb{F})$ and $b \in \mathbb{F}^{m}$. If $m=n$ and $A \in G L_{n}(\mathbb{F})$ then

$$
\operatorname{Sol}(A x=b)=\left\{A^{-1} b\right\}
$$

The following proposition says that $\operatorname{Sol}(A x=b)$ is the same size as $\operatorname{ker}(A)$.
Proposition 4.8. Let $A \in M_{m \times n}(\mathbb{F})$ and $b \in \mathbb{F}^{m}$ and assume $\operatorname{Sol}(A x=b) \neq \emptyset$. Let $p \in \operatorname{Sol}(A x=b)$. Then

$$
\operatorname{Sol}(A x=b)=p+\operatorname{ker}(A)
$$

The following proposition determines $\operatorname{Sol}(A x=b)$ explicitly.
Proposition 4.9. Let $A \in M_{m \times n}(\mathbb{F})$ and $b \in \mathbb{F}^{n}$. Assume $r \in\{1, \ldots, \min (m, n)\}$ and $P \in G L_{m}(\mathbb{F})$ and $Q \in G L_{n}(\mathbb{F})$ are such that

$$
A=P 1_{r} Q
$$

(a) If there exists $j \in\{r+1, \ldots, m\}$ such that $\left(P^{-1} b\right)_{j} \neq 0$ then $\operatorname{Sol}(A x=b)=\emptyset$.
(b) If $\left(P^{-1} b\right)_{r+1}=0,\left(P^{-1} b\right)_{r+2}=0, \ldots,\left(P^{-1} b\right)_{m}=0$ then $\operatorname{Sol}(A x=b) \neq \emptyset$ and

$$
\operatorname{Sol}(A x=b)=Q^{-1}\left(\begin{array}{c}
\left(P^{-1} b\right)_{1} \\
\vdots \\
\left(P^{-1} b\right)_{r} \\
0 \\
\vdots \\
0
\end{array}\right)+\operatorname{span}\left\{\left(\begin{array}{c}
\mid \\
q_{r+1} \\
\mid
\end{array}\right), \ldots,\left(\begin{array}{c}
\mid \\
q_{n} \\
\mid
\end{array}\right)\right\}
$$

where q_{1}, \ldots, q_{n} are the columns of Q^{-1}.

