9 F-modules

9.1 Vector spaces and linear transformations

Let \mathbb{F} be a field. A \mathbb{F} -vector space, or \mathbb{F} -module, is a set V with functions

$V \times V$	\rightarrow	V	and	$\mathbb{F} \times V$	\rightarrow	V
(v_1, v_2)	\mapsto	$v_1 + v_2$		(c, v)	\mapsto	cv

(addition and scalar multiplication) such that

- (a) If $v_1, v_2, v_3 \in V$ then $(v_1 + v_2) + v_3 = v_1 + (v_2 + v_3)$,
- (b) There exists $0 \in V$ such that if $v \in V$ then 0 + v = v and v + 0 = v,
- (c) If $v \in V$ then there exists $-v \in V$ such that v + (-v) = 0 and (-v) + v = 0,
- (d) If $v_1, v_2 \in V$ then $v_1 + v_2 = v_2 + v_1$,
- (e) If $c \in \mathbb{F}$ and $v_1, v_2 \in V$ then $c(v_1 + v_2) = cv_1 + cv_2$,
- (f) If $c_1, c_2 \in \mathbb{F}$ and $v \in V$ then $(c_1 + c_2)v = c_1v + c_2v$,
- (g) If $c_1, c_2 \in \mathbb{F}$ and $v \in V$ then $c_1(c_2v) = (c_1c_2)v$,
- (h) If $v \in V$ then 1v = v.

Linear transformations. Linear transformations are for comparing vector spaces.

Let \mathbb{F} be a field and let V and W be \mathbb{F} -vector spaces. An \mathbb{F} -linear transformation from V to W is a function $f: V \to W$ such that

- (a) If $v_1, v_2 \in V$ then $f(v_1 + v_2) = f(v_1) + f(v_2)$,
- (b) If $c \in \mathbb{F}$ and $v \in V$ then f(cv) = cf(v).

Subspaces. One vector space can be a subspace of another.

Let V be an \mathbb{F} -vector space. A subspace of V is a subset $W \subseteq V$ such that

- (a) If $w_1, w_2 \in W$ then $w_1 + w_2 \in W$,
- (b) $0 \in W$,
- (c) If $w \in W$ then $-w \in W$,
- (d) If $w \in W$ and $c \in \mathbb{F}$ then $cw \in W$.

The zero subspace. The tiniest vector space is the zero space.

The zero space, (0), is the set containing only 0 with the operations 0 + 0 = 0 and $c \cdot 0$, for $c \in \mathbb{F}$.

9.2 Kernels and images

The kernel, or null space, of an \mathbb{F} -linear transformation $f: V \to W$ is the set

$$\ker(f) = \{ v \in V \mid f(v) = 0 \}.$$

The *image* of an \mathbb{F} -linear transformation $f: V \to W$ is the set

$$\operatorname{im}(f) = \{ f(v) \mid v \in V \}.$$

Proposition 9.1. Let $f: V \to W$ be an \mathbb{F} -linear transformation. Then

- (a) ker f is a subspace of V, and
- (b) $\inf f$ is a subspace of W.

Let S and T be sets and let $f: S \to T$ be a function. The function $f: S \to T$ is *injective* if f satisfies:

if $s_1, s_2 \in S$ and $f(s_1) = f(s_2)$ then $s_1 = s_2$.

The function $f: S \to T$ is surjective if f satisfies:

if $t \in T$ then there exists $s \in S$ such that f(s) = t.

Proposition 9.2. Let $f: V \to W$ be a linear transformation. Then

- (a) ker $f = \{0\}$ if and only if f is injective, and
- (b) $\inf f = W$ if and only if f is surjective.

9.3 Bases and dimension

Let \mathbb{F} be a field and let V be a vector space over \mathbb{F} . Let $\{v_1, v_2, \ldots, v_k\}$ be a subset of V.

• The span of the set $\{v_1, \ldots, v_k\}$ is

$$\operatorname{span}\{v_1, \dots, v_k\} = \{c_1v_1 + c_2v_2 + \dots + c_kv_k \mid c_1, c_2, \dots, c_k \in \mathbb{F}\}.$$

- A linear combination of v_1, v_2, \ldots, v_k is an element of span $\{v_1, \ldots, v_k\}$.
- The set $\{v_1, \ldots, v_k\}$ is *linearly independent* if it satisfies:

if $c_1, \ldots, c_k \in \mathbb{F}$ and $c_1v_1 + \cdots + c_kv_k = 0$ then $c_1 = 0, c_2 = 0, \ldots, c_k = 0$.

- A basis of V is a subset $B \subseteq V$ such that
 - (a) $\operatorname{span}(B) = V$,
 - (b) B is linearly independent.
- The dimension of V is the cardinality (number of elements) of a basis of V.

Proposition 9.3. Let V be a vector space and let B be a subset of V. The following are equivalent: (a) B is a basis of V;

- (b) B is a minimal element of $\{S \subseteq V \mid \text{span}(S) = V\}$, ordered by inclusion;
- (c) B is a maximal element of $\{L \subseteq V \mid L \text{ is linearly independent}\}$, ordered by inclusion.

Theorem 9.4. Let V be a vector space over a field \mathbb{F} . Then

- (a) V has a basis, and
- (b) Any two bases of V have the same number of elements.

9.4 Addition, scalar multiplication and composition of linear transformations

The sum of two \mathbb{F} -linear transformations $f_1: V \to W$ and $f_2: V \to W$ is the \mathbb{F} -linear transformation $(f_1 + f_2): V \to W$.

$$(f_1 + f_2)(v) = f_1(v) + f_2(v), \quad \text{for } v \in V.$$

Let $f: V \to W$ be an \mathbb{F} -linear transformation and let $c \in \mathbb{F}$. The scalar multiplication of f by c is the \mathbb{F} -linear transformation $(cf): V \to W$ given by

$$(cf)(v) = c \cdot f(v), \quad \text{for } v \in V.$$

The composition of an F-linear transformation $f_2: V \to W$ and an F-linear transformation $f_1: W \to Z$ is the F-linear transformation $(f_1 \circ f_2): V \to Z$ given by

$$(f_1 \circ f_2)(v) = f_1(f_2(v)), \quad \text{for } v \in V.$$

9.5 Matrices of linear transformations and change of basis matrices

Let V and W be \mathbb{F} -vector spaces. Let B be a basis of V and let C be a basis of W. Let $f: V \to W$ be an \mathbb{F} -linear transformation. The matrix of $f: V \to W$ with respect to the bases B and C is the matrix

$$f_{CB} \in M_{C \times B}(\mathbb{F})$$
 given by $f(b) = \sum_{c \in C} f_{CB}(c, b)c$ for $b \in B$.

Proposition 9.5. Let V and W and Z be \mathbb{F} -vector spaces with bases B, C and D, respectively. Let

$$f: V \to W, \quad g: V \to W, \quad h: W \to Z \quad be \ \mathbb{F}\text{-linear transformations}$$

and let $c \in \mathbb{F}$. Then

$$(cf)_{CB} = c \cdot f_{CB}, \qquad f_{CB} + g_{CB} = (f+g)_{CB} \qquad and \qquad (h \circ g)_{DB} = h_{DC}g_{CB}$$

Let V be an \mathbb{F} -vector space and let B and C be bases of V. The change of basis matrix from B to C is the matrix $P_{CB} \in M_{C \times B}(\mathbb{F})$ given by

$$b = \sum_{c \in C} P_{CB}(c, b)c, \quad \text{for } b \in B.$$
(9.1)

Proposition 9.6. Let $g: V \to W$ and $f: V \to V$ be an \mathbb{F} -linear transformations. Let

 B_1 and B_2 be bases of V, and let C_1 and C_2 be bases of W,

and let $P_{B_1B_2}$ and $P_{C_2C_1}$ be the change of basis matrices defined as in (9.1). Then

$$g_{C_2B_2} = P_{C_2C_1}g_{C_1B_1}P_{B_1B_2}$$
 and $f_{B_2B_2} = P_{B_1B_2}^{-1}f_{B_1B_1}P_{B_1B_2}$