$9 \quad \mathbb{F}$-modules

9.1 Vector spaces and linear transformations

Let \mathbb{F} be a field. A \mathbb{F}-vector space, or \mathbb{F}-module, is a set V with functions

$$
\begin{array}{rlc}
V \times V & \rightarrow & V \\
\left(v_{1}, v_{2}\right) & \mapsto & v_{1}+v_{2}
\end{array} \quad \text { and } \quad \begin{array}{rlll}
\mathbb{F} \times V & \rightarrow & V \\
(c, v) & \mapsto & c v
\end{array}
$$

(addition and scalar multiplication) such that
(a) If $v_{1}, v_{2}, v_{3} \in V$ then $\left(v_{1}+v_{2}\right)+v_{3}=v_{1}+\left(v_{2}+v_{3}\right)$,
(b) There exists $0 \in V$ such that if $v \in V$ then $0+v=v$ and $v+0=v$,
(c) If $v \in V$ then there exists $-v \in V$ such that $v+(-v)=0$ and $(-v)+v=0$,
(d) If $v_{1}, v_{2} \in V$ then $v_{1}+v_{2}=v_{2}+v_{1}$,
(e) If $c \in \mathbb{F}$ and $v_{1}, v_{2} \in V$ then $c\left(v_{1}+v_{2}\right)=c v_{1}+c v_{2}$,
(f) If $c_{1}, c_{2} \in \mathbb{F}$ and $v \in V$ then $\left(c_{1}+c_{2}\right) v=c_{1} v+c_{2} v$,
(g) If $c_{1}, c_{2} \in \mathbb{F}$ and $v \in V$ then $c_{1}\left(c_{2} v\right)=\left(c_{1} c_{2}\right) v$,
(h) If $v \in V$ then $1 v=v$.

Linear transformations. Linear transformations are for comparing vector spaces.
Let \mathbb{F} be a field and let V and W be \mathbb{F}-vector spaces. An \mathbb{F}-linear transformation from V to W is a function $f: V \rightarrow W$ such that
(a) If $v_{1}, v_{2} \in V$ then $f\left(v_{1}+v_{2}\right)=f\left(v_{1}\right)+f\left(v_{2}\right)$,
(b) If $c \in \mathbb{F}$ and $v \in V$ then $f(c v)=c f(v)$.

Subspaces. One vector space can be a subspace of another.
Let V be an \mathbb{F}-vector space. A subspace of V is a subset $W \subseteq V$ such that
(a) If $w_{1}, w_{2} \in W$ then $w_{1}+w_{2} \in W$,
(b) $0 \in W$,
(c) If $w \in W$ then $-w \in W$,
(d) If $w \in W$ and $c \in \mathbb{F}$ then $c w \in W$.

The zero subspace. The tiniest vector space is the zero space.
The zero space, (0), is the set containing only 0 with the operations $0+0=0$ and $c \cdot 0$, for $c \in \mathbb{F}$.

9.2 Kernels and images

The kernel, or null space, of an \mathbb{F}-linear transformation $f: V \rightarrow W$ is the set

$$
\operatorname{ker}(f)=\{v \in V \mid f(v)=0\}
$$

The image of an \mathbb{F}-linear transformation $f: V \rightarrow W$ is the set

$$
\operatorname{im}(f)=\{f(v) \mid v \in V\}
$$

Proposition 9.1. Let $f: V \rightarrow W$ be an \mathbb{F}-linear transformation. Then
(a) $\operatorname{ker} f$ is a subspace of V, and
(b) $\operatorname{im} f$ is a subspace of W.

Let S and T be sets and let $f: S \rightarrow T$ be a function.
The function $f: S \rightarrow T$ is injective if f satisfies:

$$
\text { if } s_{1}, s_{2} \in S \text { and } f\left(s_{1}\right)=f\left(s_{2}\right) \quad \text { then } s_{1}=s_{2}
$$

The function $f: S \rightarrow T$ is surjective if f satisfies:

$$
\text { if } t \in T \text { then there exists } s \in S \text { such that } f(s)=t
$$

Proposition 9.2. Let $f: V \rightarrow W$ be a linear transformation. Then
(a) $\operatorname{ker} f=\{0\}$ if and only if f is injective, and
(b) $\operatorname{im} f=W$ if and only if f is surjective.

9.3 Bases and dimension

Let \mathbb{F} be a field and let V be a vector space over \mathbb{F}. Let $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ be a subset of V.

- The span of the set $\left\{v_{1}, \ldots, v_{k}\right\}$ is

$$
\operatorname{span}\left\{v_{1}, \ldots, v_{k}\right\}=\left\{c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{k} v_{k} \mid c_{1}, c_{2}, \ldots, c_{k} \in \mathbb{F}\right\}
$$

- A linear combination of $v_{1}, v_{2}, \ldots, v_{k}$ is an element of $\operatorname{span}\left\{v_{1}, \ldots, v_{k}\right\}$.
- The set $\left\{v_{1}, \ldots, v_{k}\right\}$ is linearly independent if it satisfies:

$$
\text { if } c_{1}, \ldots, c_{k} \in \mathbb{F} \text { and } c_{1} v_{1}+\cdots+c_{k} v_{k}=0 \quad \text { then } \quad c_{1}=0, c_{2}=0, \ldots, c_{k}=0
$$

- A basis of V is a subset $B \subseteq V$ such that
(a) $\operatorname{span}(B)=V$,
(b) B is linearly independent.
- The dimension of V is the cardinality (number of elements) of a basis of V.

Proposition 9.3. Let V be a vector space and let B be a subset of V. The following are equivalent:
(a) B is a basis of V;
(b) B is a minimal element of $\{S \subseteq V \mid \operatorname{span}(S)=V\}$, ordered by inclusion;
(c) B is a maximal element of $\{L \subseteq V \mid L$ is linearly independent $\}$, ordered by inclusion.

Theorem 9.4. Let V be a vector space over a field \mathbb{F}. Then
(a) V has a basis, and
(b) Any two bases of V have the same number of elements.

9.4 Addition, scalar multiplication and composition of linear transformations

The sum of two \mathbb{F}-linear transformations $f_{1}: V \rightarrow W$ and $f_{2}: V \rightarrow W$ is the \mathbb{F}-linear transformation $\left(f_{1}+f_{2}\right): V \rightarrow W$.

$$
\left(f_{1}+f_{2}\right)(v)=f_{1}(v)+f_{2}(v), \quad \text { for } v \in V
$$

Let $f: V \rightarrow W$ be an \mathbb{F}-linear transformation and let $c \in \mathbb{F}$. The scalar multiplication of f by c is the \mathbb{F}-linear transformation $(c f): V \rightarrow W$ given by

$$
(c f)(v)=c \cdot f(v), \quad \text { for } v \in V
$$

The composition of an \mathbb{F}-linear transformation $f_{2}: V \rightarrow W$ and an \mathbb{F}-linear transformation $f_{1}: W \rightarrow Z$ is the \mathbb{F}-linear transformation $\left(f_{1} \circ f_{2}\right): V \rightarrow Z$ given by

$$
\left(f_{1} \circ f_{2}\right)(v)=f_{1}\left(f_{2}(v)\right), \quad \text { for } v \in V
$$

9.5 Matrices of linear transformations and change of basis matrices

Let V and W be \mathbb{F}-vector spaces. Let B be a basis of V and let C be a basis of W. Let $f: V \rightarrow W$ be an \mathbb{F}-linear transformation. The matrix of $f: V \rightarrow W$ with respect to the bases B and C is the matrix

$$
f_{C B} \in M_{C \times B}(\mathbb{F}) \quad \text { given by } \quad f(b)=\sum_{c \in C} f_{C B}(c, b) c \quad \text { for } b \in B
$$

Proposition 9.5. Let V and W and Z be \mathbb{F}-vector spaces with bases B, C and D, respectively. Let

$$
f: V \rightarrow W, \quad g: V \rightarrow W, \quad h: W \rightarrow Z \quad \text { be } \mathbb{F} \text {-linear transformations }
$$

and let $c \in \mathbb{F}$. Then

$$
(c f)_{C B}=c \cdot f_{C B}, \quad f_{C B}+g_{C B}=(f+g)_{C B} \quad \text { and } \quad(h \circ g)_{D B}=h_{D C} g_{C B}
$$

Let V be an \mathbb{F}-vector space and let B and C be bases of V. The change of basis matrix from B to C is the matrix $P_{C B} \in M_{C \times B}(\mathbb{F})$ given by

$$
\begin{equation*}
b=\sum_{c \in C} P_{C B}(c, b) c, \quad \text { for } b \in B \tag{9.1}
\end{equation*}
$$

Proposition 9.6. Let $g: V \rightarrow W$ and $f: V \rightarrow V$ be an \mathbb{F}-linear transformations. Let
B_{1} and B_{2} be bases of V, \quad and let C_{1} and C_{2} be bases of W,
and let $P_{B_{1} B_{2}}$ and $P_{C_{2} C_{1}}$ be the change of basis matrices defined as in 9.1. Then

$$
g_{C_{2} B_{2}}=P_{C_{2} C_{1}} g_{C_{1} B_{1}} P_{B_{1} B_{2}} \quad \text { and } \quad f_{B_{2} B_{2}}=P_{B_{1} B_{2}}^{-1} f_{B_{1} B_{1}} P_{B_{1} B_{2}}
$$

