4.2 Permutation matrices S_{n}

Let $n \in \mathbb{Z}_{>0}$.

- An $n \times n$ permutation matrix is an $n \times n$ matrix such that
(a) There is exactly one nonzero entry in each row and each column,
(b) The nonzero entries are 1 .
- The symmetric group is

$$
S_{n}=\{n \times n \text { permutation matrices }\}
$$

- The transpositions in S_{n} are the matrices $s_{i j}=1-E_{i i}-E_{j j}+E_{i j}+E_{j i}$,

$$
s_{i j}=\left(\begin{array}{lllllllll}
1 & & & & & & & & \\
\\
& \ddots & & & & & & & \\
\\
& & 1 & & & & & & \\
\\
& & & 0 & & & & & \\
\\
& & & & 1 & & & 1 & \\
\\
& & & & & \ddots & & & \\
\\
& & & & & & 1 & & \\
\\
& & & 1 & & & & 0 & \\
\\
& & & & & & & & 1 \\
& & & & & & & & \\
& & & & & & & & \\
\end{array}\right)
$$

- The simple transpositions in S_{n} are the matrices $s_{i}=s_{i, i+1}$,

Proposition 4.2. The symmetric group S_{n} is presented by generators $s_{1}, s_{2}, \ldots, s_{n-1}$ and relations

$$
\begin{equation*}
s_{i}^{2}=1 \quad \text { and } \quad s_{j} s_{j+1} s_{j}=s_{j+1} s_{j} s_{j+1} \quad \text { and } \quad s_{k} s_{\ell}=s_{\ell} s_{k}, \tag{4.2}
\end{equation*}
$$

for $i, j, k, \ell \in\{1, \ldots, n-1\}$ with $j \neq n-1$ and $k \neq \ell \pm 1$.
A key step of the proof is to write a permutation matrix in normal form.

