2.2.2 Normal form

The normal form algorithm (often called "row reduction"), when applied to a matrix $A \in M_{m \times n}(\mathbb{F})$ gives the following theorem.

Theorem 2.1. Let $m, n \in \mathbb{Z}_{>0}$ and let $A \in M_{m \times n}(\mathbb{F})$. Then the normal form algorithm determines $r \in\{0, \ldots, \min (m, n)\}, \quad \ell, s \in \mathbb{Z}_{>0}, \quad i_{1}, \ldots, i_{\ell} \in\{1, \ldots, n-1\}, \quad k_{1}, \ldots, k_{s}, \ell_{1}, \ldots, \ell_{s} \in\{1, \ldots, n\}$,

$$
\gamma_{1}, \ldots \gamma_{\ell}, a_{1}, \ldots, a_{s} \in \mathbb{F}, \quad d_{1}, \ldots, d_{r} \in \mathbb{F}^{\times}, \quad J \subseteq\{1, \ldots, n\}
$$

such that if

$$
P=y_{i_{1}}\left(\gamma_{1}\right) \cdots y_{i_{\ell}}\left(\gamma_{\ell}\right) h\left(d_{1}, \ldots, d_{r}\right) \quad \text { and } \quad Q=u_{J} x_{k_{1} \ell_{1}}\left(a_{1}\right) \cdots x_{k_{s} \ell_{s}}\left(a_{s}\right)
$$

then

$$
A=P 1_{r} Q
$$

2.2.3 Orbit representatives for $G L_{m}(\mathbb{F})$ and $G L_{n}(\mathbb{F})$ acting on $M_{m \times n}(\mathbb{F})$

Let $m, n \in \mathbb{Z}_{>0}$. An $m \times n$ reduced row echelon matrix is a matrix $R \in M_{m \times n}(\mathbb{F})$ such that
(a) There exists $r \in\{1, \ldots, m\}$ such that rows $1, \ldots, r$ are not all zero and rows $r+1, \ldots, m$ are all 0 ,
(b) If $i \in\{1, \ldots, r-1\}$ then the first nonzero entry in each row i is 1 ,
(c) If $i \in\{1, \ldots, r-1\}$ and $\left(i, c_{i}\right)$ is the position of the first nonzero entry in row i then all other entries in column c_{i} are 0 ,
(d) $c_{1}<c_{2}<\cdots<c_{r}$.

Theorem 2.2. Let \mathcal{E} be the set of reduced row echelon matrices in $M_{m \times n}(\mathbb{F})$ and

$$
\text { let } 1_{r} \in M_{m \times n}(\mathbb{F}) \text { be given by } \quad 1_{r}=E_{11}+\cdots+E_{r r}
$$

where $E_{i j}$ has 1 in the (i, j) entry and 0 elsewhere. Then

$$
M_{m \times n}(\mathbb{F})=\bigsqcup_{R \in \mathcal{E}} G L_{m}(\mathbb{F}) \cdot R \quad \text { and } \quad M_{m \times n}(\mathbb{F})=\bigsqcup_{r=0}^{\min (m, n)} G L_{m}(\mathbb{F}) 1_{r} G L_{n}(\mathbb{F})
$$

where

$$
\begin{aligned}
G L_{m}(\mathbb{F}) R & =\left\{P R \in M_{m \times n}(\mathbb{F}) \mid P \in G L_{m}(\mathbb{F})\right\} \quad \text { and } \\
G L_{m}(\mathbb{F}) 1_{r} G L_{n}(\mathbb{F}) & =\left\{P 1_{r} Q \in M_{m \times n}(\mathbb{F}) \mid P \in G L_{m}(\mathbb{F}), Q \in G L_{n}(\mathbb{F})\right\}
\end{aligned}
$$

