2.2.2 Normal form

The normal form algorithm (often called "row reduction"), when applied to a matrix $A \in M_{m \times n}(\mathbb{F})$ gives the following theorem.

Theorem 2.1. Let $m, n \in \mathbb{Z}_{>0}$ and let $A \in M_{m \times n}(\mathbb{F})$. Then the normal form algorithm determines

 $r \in \{0, \dots, \min(m, n)\}, \quad \ell, s \in \mathbb{Z}_{>0}, \quad i_1, \dots, i_\ell \in \{1, \dots, n-1\}, \quad k_1, \dots, k_s, \ell_1, \dots, \ell_s \in \{1, \dots, n\},$

$$\gamma_1, \dots, \gamma_\ell, a_1, \dots, a_s \in \mathbb{F}, \quad d_1, \dots, d_r \in \mathbb{F}^{\times}, \quad J \subseteq \{1, \dots, n\}_r$$

such that if

$$P = y_{i_1}(\gamma_1) \cdots y_{i_\ell}(\gamma_\ell) h(d_1, \dots, d_r) \qquad and \qquad Q = u_J x_{k_1 \ell_1}(a_1) \cdots x_{k_s \ell_s}(a_s),$$

then

$$A = P1_rQ.$$

2.2.3 Orbit representatives for $GL_m(\mathbb{F})$ and $GL_n(\mathbb{F})$ acting on $M_{m \times n}(\mathbb{F})$

Let $m, n \in \mathbb{Z}_{>0}$. An $m \times n$ reduced row echelon matrix is a matrix $R \in M_{m \times n}(\mathbb{F})$ such that

- (a) There exists $r \in \{1, ..., m\}$ such that rows 1, ..., r are not all zero and rows r + 1, ..., m are all 0,
- (b) If $i \in \{1, ..., r-1\}$ then the first nonzero entry in each row i is 1,
- (c) If $i \in \{1, ..., r-1\}$ and (i, c_i) is the position of the first nonzero entry in row *i* then all other entries in column c_i are 0,
- (d) $c_1 < c_2 < \cdots < c_r$.

Theorem 2.2. Let \mathcal{E} be the set of reduced row echelon matrices in $M_{m \times n}(\mathbb{F})$ and

let $1_r \in M_{m \times n}(\mathbb{F})$ be given by $1_r = E_{11} + \dots + E_{rr}$,

where E_{ij} has 1 in the (i, j) entry and 0 elsewhere. Then

$$M_{m \times n}(\mathbb{F}) = \bigsqcup_{R \in \mathcal{E}} GL_m(\mathbb{F}) \cdot R \quad and \quad M_{m \times n}(\mathbb{F}) = \bigsqcup_{r=0}^{\min(m,n)} GL_m(\mathbb{F}) \mathbf{1}_r GL_n(\mathbb{F}),$$

where

$$GL_m(\mathbb{F})R = \{ PR \in M_{m \times n}(\mathbb{F}) \mid P \in GL_m(\mathbb{F}) \} \quad and$$
$$GL_m(\mathbb{F})1_rGL_n(\mathbb{F}) = \{ P1_rQ \in M_{m \times n}(\mathbb{F}) \mid P \in GL_m(\mathbb{F}), Q \in GL_n(\mathbb{F}) \}$$