1 Matrices

1.1 Matrices and operations

Let \mathbb{F} be a field. Let $m, n \in \mathbb{Z}_{>0}$.

- An $m \times n$ matrix with entries in \mathbb{F} is a table of elements of \mathbb{F} with m rows and n columns. More precisely, an $m \times n$ matrix with entries in \mathbb{F} is a function

$$
A:\{1, \ldots, m\} \times\{1, \ldots, n\} \longrightarrow \mathbb{F}
$$

- A column vector of length n is an $n \times 1$ matrix.
- A row vector of length n is an $1 \times n$ matrix.
- The (i, j) entry of a matrix A is the element $A(i, j)$ in row i and column j of A.

$$
A=\left(\begin{array}{cccc}
A(1,1) & A(1,2) & \cdots & A(1, m) \\
A(2,1) & A(2,2) & \cdots & A(2, m) \\
\vdots & & & \vdots \\
A(n, 1) & A(n, 2) & \cdots & A(n, m)
\end{array}\right)
$$

Let $M_{m \times n}(\mathbb{F})$ be the set of $m \times n$ matrices with entries in \mathbb{F}.
Let $M_{n}(\mathbb{F})=M_{n \times n}(\mathbb{F})$ be the set of $n \times n$ matrices with entries in \mathbb{F}.

- The sum of $m \times n$ matrices A and B is the $m \times n$ matrix $A+B$ given by

$$
(A+B)(i, j)=A(i, j)+B(i, j), \quad \text { for } i \in\{1, \ldots, m\} \text { and } j \in\{1, \ldots, n\} .
$$

- The scalar multiplication of an element $c \in \mathbb{F}$ with an $m \times n$ matrix A is the $m \times n$ matrix $c \cdot A$ given by

$$
(c \cdot A)(i, j)=c \cdot A(i, j), \quad \text { for } i \in\{1, \ldots, m\} \text { and } j \in\{1, \ldots, n\} .
$$

- The product of an $m \times n$ matrix A and an $n \times p$ matrix B is the $m \times p$ matrix $A B$ given by

$$
\begin{aligned}
(A B)(i, k) & =\sum_{j=1}^{n} A(i, j) B(j, k) \\
& =A(i, 1) B(1, k)+A(i, 2) B(2, k)+\cdots+A(i, n) B(n, k)
\end{aligned}
$$

for $i \in\{1, \ldots, m\}$ and $k \in\{1, \ldots, p\}$.
The zero matrix is the $m \times n$ matrix $0 \in M_{m \times n}(\mathbb{F})$ given by

$$
0(i, j)=0, \quad \text { for } i \in\{1, \ldots, m\} \text { and } j \in\{1, \ldots, n\}
$$

The negative of a matrix $A \in M_{m \times n}(\mathbb{F})$ is the matrix $-A \in M_{m \times n}(\mathbb{F})$ given by

$$
(-A)(i, j)=-A(i, j), \quad \text { for } i \in\{1, \ldots, m\} \text { and } j \in\{1, \ldots, n\} .
$$

For $k \in\{1, \ldots, m\}$ and $\ell \in\{1, \ldots, n\}$ let $E_{k \ell} \in M_{m \times n}(\mathbb{F})$ be the matrix given by

$$
E_{k \ell}(i, j)= \begin{cases}1, & \text { if } i=k \text { and } j=\ell \\ 0, & \text { otherwise }\end{cases}
$$

so that $E_{k \ell}$ has a 1 in the (k, ℓ) entry and all other entries 0 .

Proposition 1.1. Let $m, n \in \mathbb{Z}_{>0}$ and let $M_{m \times n}(\mathbb{F})$ be the set of $m \times n$ matrices with entries in \mathbb{F}.
(a) If $A, B, C \in M_{m \times n}(\mathbb{F})$ then $A+(B+C)=(A+B)+C$.
(b) If $A, B \in M_{m \times n}(\mathbb{F})$ then $A+B=B+A$.
(c) If $A \in M_{m \times n}(\mathbb{F})$ then $0+A=A$ and $A+0=A$.
(d) If $A \in M_{m \times n}(\mathbb{F})$ then $(-A)+A=0$ and $A+(-A)=0$.
(e) If $A \in M_{m \times n}(\mathbb{F})$ and $c_{1}, c_{2} \in \mathbb{F}$ then $c_{1} \cdot\left(c_{2} \cdot A\right)=\left(c_{1} c_{2}\right) \cdot A$.
(f) If $A \in M_{m \times n}(\mathbb{F})$ and $1 \in \mathbb{F}$ is the identity in \mathbb{F} then $1 \cdot A=A$.

The Kronecker delta is given by

$$
\delta_{i j}= \begin{cases}1, & \text { if } i=j \\ 0, & \text { otherwise }\end{cases}
$$

The identity matrix is the $n \times n$ matrix $1 \in M_{n \times n}(\mathbb{F})$ given by

$$
1(i, j)=\delta_{i j}, \quad \text { for } i \in\{1, \ldots, m\} \text { and } j \in\{1, \ldots, n\}
$$

Proposition 1.2. Let $n \in \mathbb{Z}_{>0}$ and let $M_{n}(\mathbb{F})$ be the set of $n \times n$ matrices in \mathbb{F}.
(a) If $A, B, C \in M_{n}(\mathbb{F})$ then $A+(B+C)=(A+B)+C$.
(b) If $A, B \in M_{n}(\mathbb{F})$ then $A+B=B+A$.
(c) If $A \in M_{n}(\mathbb{F})$ then $0+A=A$ and $A+0=A$.
(d) If $A \in M_{n}(\mathbb{F})$ then $(-A)+A=0$ and $A+(-A)=0$.
(e) If $A, B, C \in M_{n}(\mathbb{F})$ then $A(B C)=(A B) C$.
(f) If $A, B, C \in M_{n}(\mathbb{F})$ then $(A+B) C=A C+B C$ and $C(A+B)=C A+C B$.
(g) If $A \in M_{n}(\mathbb{F})$ then $1 A=A$ and $A 1=A$.

The transpose of an $m \times n$ matrix A is the $n \times m$ matrix A^{t} given by

$$
A^{t}(i, j)=A(j, i), \quad \text { for } i \in\{1, \ldots, n\} \text { and } j \in\{1, \ldots, m\} .
$$

Proposition 1.3. Let $m, n \in \mathbb{Z}_{>0}$, let $M_{m \times n}(\mathbb{F})$ be the set of $m \times n$ matrices with entries in \mathbb{F}, and let $M_{n}(\mathbb{F})$ be the set of $n \times n$ matrices in \mathbb{F}.
(a) If $A, B \in M_{m \times n}(\mathbb{F})$ then $(A+B)^{t}=A^{t}+B^{t}$,
(b) If $A \in M_{m \times n}(\mathbb{F})$ and $c \in \mathbb{F}$ then $(c \cdot A)^{t}=c \cdot A^{t}$,
(c) If $A, B \in M_{n}(\mathbb{F})$ then $(A B)^{t}=B^{t} A^{t}$.
(d) If $A \in M_{n}(\mathbb{F})$ then $\left(A^{t}\right)^{t}=A$.

Proposition 1.4. Let $m, n \in \mathbb{Z}_{>0}$, let $M_{m \times n}(\mathbb{F})$ be the set of $m \times n$ matrices with entries in \mathbb{F}. Then
(a) (span) $M_{m \times n}(\mathbb{F})=\left\{\sum_{i=1}^{m} \sum_{j=1}^{n} c_{i j} E_{i j} \mid c_{i j} \in \mathbb{F}\right\}$.
(b) (linear independence) If $c_{11}, \ldots, c_{m n} \in \mathbb{F}$ and

$$
\sum_{i=1}^{m} \sum_{j=1}^{n} c_{i j} E_{i j}=0 \quad \text { then } \quad \text { if } k \in\{1, \ldots, m\} \text { and } \ell \in\{1, \ldots, n\} \text { then } c_{k \ell}=0
$$

