3 Solving systems of linear equations

3.1 Invertible matrices

A matrix $P \in M_n(\mathbb{F})$ is *invertible* if there exists a matrix $P^{-1} \in M_n(\mathbb{F})$ such that

$$PP^{-1} = 1$$
 and $P^{-1}P = 1$.

The general linear group is

$$GL_n(\mathbb{F}) = \{ P \in M_n(\mathbb{F}) \mid P \text{ is invertible} \}.$$

Proposition 3.1. If $P, Q \in GL_n(\mathbb{F})$ then

$$(PQ)^{-1} = Q^{-1}P^{-1}.$$

3.2 Kernels and images

Let $\mathbb{F}^n = M_{n \times 1}(\mathbb{F})$. A subspace of \mathbb{F}^n is a subset $V \subseteq \mathbb{F}^n$ such that

- (a) If $v_1, v_2 \in V$ then $v_1 + v_2 \in V$,
- (b) if $v \in V$ and $c \in \mathbb{F}$ then $cv \in V$.

Let $A \in M_{m \times n}(\mathbb{F})$. Define

$$\ker(A) = \{ v \in \mathbb{F}^n \mid Av = 0 \} \quad \text{and} \quad \operatorname{im}(A) = \{ Av \mid v \in \mathbb{F}^n \}.$$

Proposition 3.2. Let $A \in M_{m \times n}(\mathbb{F})$. Then ker(A) is a subspace of \mathbb{F}^n and im(A) is a subspace of \mathbb{F}^m .

Proposition 3.3. Let \mathbb{F} be a field and let $A \in M_{m \times n}(\mathbb{F})$. Let $P^{-1} \in GL_m(\mathbb{F})$ and $Q^{-1} \in GL_n(\mathbb{F})$. Then

$$\ker(P^{-1}AQ^{-1}) = Q \ker(A)$$
 and $\operatorname{im}(P^{-1}AQ^{-1}) = P^{-1}\operatorname{im}(A).$

Let $1_r \in M_{m \times n}(\mathbb{F})$ be given by $1_r = E_{11} + \cdots + E_{rr}$. For $i \in \{1, \ldots, n\}$ and $j \in \{1, \ldots, m\}$ let $e_i \in \mathbb{F}^n$ and $f_j \in \mathbb{F}^m$ be given by $e_i = E_{i1}$ and $f_j = E_{j1}$. Then

 $\{e_1, \ldots, e_n\}$ is a basis of \mathbb{F}^n and $\{f_1, \ldots, f_m\}$ is a basis of \mathbb{F}^m .

Then

 $\{e_{r+1},\ldots,e_n\}$ is a basis of ker (1_r) and $\operatorname{im}(1_r) = \operatorname{span}\{f_1,\ldots,f_r\}$. (kerimbasis)

Proposition 3.4. Let $A \in M_{m \times n}(\mathbb{F})$. Let $r \in \{1, \ldots, \min(m, n)\}$ and $P \in GL_m(\mathbb{F})$ and $Q \in GL_n(\mathbb{F})$ such that $A = P\mathbf{1}_r Q$. Then

$$\ker(A) = Q^{-1} \ker(1_r) \qquad and \qquad \operatorname{im}(A) = P \operatorname{im}(1_r).$$

Proposition 3.5. Let $A \in M_{m \times n}(\mathbb{F})$. Then

 $\dim(\operatorname{im}(A)) = (number of columns of A) - \dim(\ker(A)).$

Remark 3.6. The terms rank and nullity should be deprecated as it is more accurate and more instructive to use the phrases "dimension of the image" and "dimension of the kernel",

 $\operatorname{nullity}(A) = \operatorname{dim}(\ker(A))$ and $\operatorname{rank}(A) = \operatorname{dim}(\operatorname{im}(A)).$