4.4 Invertible matrices $G L_{n}(\mathbb{F})$

Let $n \in \mathbb{Z}_{>0}$, let $M_{n}(\mathbb{F})$ be the set of $n \times n$ matrices with entries in \mathbb{F} and let

$$
E_{i j} \text { be the } n \times n \text { matrix with } 1 \text { in the }(i, j) \text { entry and } 0 \text { elsewhere. }
$$

- An $n \times n$ invertible matrix is an $n \times n$ matrix $A \in M_{n}(\mathbb{F})$ such that

$$
\text { there exists } A^{-1} \in M_{n}(\mathbb{F}) \quad \text { such that } \quad A^{-1} A=1 \text { and } A A^{-1}=1 .
$$

- The general linear group is

$$
G L_{n}(\mathbb{F})=\{n \times n \text { invertible matrices with entries in } \mathbb{F}\} .
$$

The invetrible elements of the field \mathbb{F} are the elements of

$$
\mathbb{F}^{\times}=\{d \in \mathbb{F} \mid d \neq 0\}=\{1 \times 1 \text { invertible matrices with entries in } \mathbb{F}\}=G L_{1}(\mathbb{F})
$$

- The elementary matrices in $G L_{n}(\mathbb{F})$ are the matrices

$$
\begin{gathered}
s_{i j}=1-E_{i i}-E_{j j}+E_{i j}+E_{j i}, \quad \text { for } i, j \in\{1, \ldots, n\} \text { with } i \neq j, \\
x_{i j}(c)=1+c E_{i j}, \quad \text { for } i, j \in\{1, \ldots, n\} \text { with } i \neq j \text { and } c \in \mathbb{F}, \\
h_{i}(d)=1+(d-1) E_{i i}, \quad \text { for } i \in\{1, \ldots, n\} \text { and } d \in G L_{1}(\mathbb{F}) .
\end{gathered}
$$

- The row reducers are $y_{i}(c)=x_{i, i+1}(c) s_{i, i+1}$ for $i \in\{1, \ldots, n-1\}$ and $c \in \mathbb{F}$.

$$
y_{i}(c)=\left(\begin{array}{llllllll}
1 & & & & & & & \\
& \ddots & & & & & & \\
& & 1 & & & & & \\
& & & c & 1 & & & \\
& & & 1 & 0 & & & \\
& & & & & 1 & & \\
& & & & & & \ddots & \\
& & & & & & & 1
\end{array}\right) \quad \text { and } \quad y_{i}(c)^{-1}=\left(\begin{array}{ccccccc}
1 & & & & & & \\
& \ddots & & & & & \\
& & 1 & & & & \\
& & & 0 & 1 & & \\
& & & 1 & -c & & \\
& & & & & 1 & \\
& & & & & & \ddots \\
& & & & & & \\
1
\end{array}\right)
$$

Theorem 4.4. The group $G L_{n}(\mathbb{F})$ is presented by generators

$$
\begin{array}{rll}
& & c \in \mathbb{F}, d_{1}, \ldots, d_{n} \in \mathbb{F}^{\times} \\
y_{i}(c), \quad h_{j}(d), \quad x_{k \ell}(c), \quad \text { for } \quad & i \in\{1, \ldots, n-1\}, j \in\{1, \ldots, n\} \\
& k, \ell \in\{1, \ldots, n\} \text { with } k<\ell .
\end{array}
$$

with the following relations:

- The reflection relation is

$$
y_{i}\left(c_{1}\right) y_{i}\left(c_{2}\right)= \begin{cases}y_{i}\left(c_{1}+c_{2}^{-1}\right) h_{i}\left(c_{2}\right) h_{i+1}\left(-c_{2}^{-1}\right) x_{i, i+1}\left(c_{2}^{-1}\right), & \text { if } c_{2} \neq 0, \tag{4.3}\\ x_{i, i+1}\left(c_{1}\right), & \text { if } c_{2}=0\end{cases}
$$

- The building relation is

$$
\begin{equation*}
y_{i}\left(c_{1}\right) y_{i+1}\left(c_{2}\right) y_{i}\left(c_{3}\right)=y_{i+1}\left(c_{3}\right) y_{i}\left(c_{1} c_{3}+c_{2}\right) y_{i+1}\left(c_{1}\right) \tag{4.4}
\end{equation*}
$$

- The x-interchange relations are

$$
\begin{array}{ll}
x_{i j}\left(c_{1}\right) x_{i j}\left(c_{2}\right)=x_{i j}\left(c_{1}+c_{2}\right), & \\
x_{i j}\left(c_{1}\right) x_{i k}\left(c_{2}\right)=x_{i k}\left(c_{2}\right) x_{i j}\left(c_{1}\right), & x_{i k}\left(c_{1}\right) x_{j k}\left(c_{2}\right)=x_{j k}\left(c_{2}\right) x_{i k}\left(c_{1}\right), \\
x_{i j}\left(c_{1}\right) x_{j k}\left(c_{2}\right)=x_{j k}\left(c_{2}\right) x_{i j}\left(c_{1}\right) x_{i k}\left(c_{1} c_{2}\right), & x_{j k}\left(c_{1}\right) x_{i j}\left(c_{2}\right)=x_{i j}\left(c_{2}\right) x_{j k}\left(c_{1}\right) x_{i k}\left(-c_{1} c_{2}\right),
\end{array}
$$

where $i<j<k$.

- Letting $h\left(d_{1}, \ldots, d_{n}\right)=h_{1}\left(d_{1}\right) \cdots h_{n}\left(d_{n}\right)$, the h-past-y relation is

$$
\begin{equation*}
h\left(d_{1}, \ldots d_{n}\right) y_{i}(c)=y_{i}\left(c d_{i} d_{i+1}^{-1}\right) h\left(d_{1}, \ldots, d_{i-1}, d_{i+1}, d_{i}, d_{i+2}, \ldots, d_{n}\right) \tag{4.5}
\end{equation*}
$$

- Letting $h\left(d_{1}, \ldots, d_{n}\right)=h_{1}\left(d_{1}\right) \cdots h_{n}\left(d_{n}\right)$, the h-past-x relation is

$$
\begin{equation*}
h\left(d_{1}, \ldots, d_{n}\right) x_{i j}(c)=x_{i j}\left(c d_{i} d_{j}^{-1}\right) h\left(d_{1}, \ldots, d_{n}\right) . \tag{4.6}
\end{equation*}
$$

- The x-past-y relations are

$$
\begin{gather*}
x_{i, i+1}\left(c_{1}\right) y_{i}\left(c_{2}\right)=y_{i}\left(c_{1}+c_{2}\right) x_{i, i+1}(0), \\
x_{i k}\left(c_{1}\right) y_{k}\left(c_{2}\right)=y_{k}\left(c_{2}\right) x_{i k}\left(c_{1} c_{2}\right) x_{i, k+1}\left(c_{1}\right), \quad x_{i, k+1}\left(c_{1}\right) y_{k}\left(c_{2}\right)=y_{k}\left(c_{2}\right) x_{i k}\left(c_{1}\right), \tag{4.7}\\
x_{i j}\left(c_{1}\right) y_{i}\left(c_{2}\right)=y_{i}\left(c_{2}\right) x_{i+1, j}\left(c_{1}\right), \quad x_{i+1, j}\left(c_{1}\right) y_{i}\left(c_{2}\right)=y_{i}\left(c_{2}\right) x_{i j}\left(c_{1}\right) x_{i+1, j}\left(-c_{1} c_{2}\right),
\end{gather*}
$$

where $i<k$ and $i+1<j$.

