9.6 Some proofs

Proposition 9.7. Let $T: V \to W$ be an \mathbb{F} -linear transformation. Let 0_V and 0_W be the zeros for V and W respectively. Then

(a) $T(0_V) = 0_W$, and (b) If $v \in V$ then T(-v) = -T(v).

Proof.

(a) Add $-T(0_V)$ to both sides of the following equation,

$$T(0_V) = T(0_V + 0_V) = T(0_V) + T(0_V).$$

(b) Since $T(v) + T(-v) = T(v + (-v)) = T(0_V) = 0_W$ and

 $T(-v) + T(v) = T((-v) + v) + T(0_V) = 0_W$

then -T(v) = T(-v).

Proposition 9.8. Let $T: V \to W$ be an \mathbb{F} -linear transformation. Then

- (a) ker T is a subspace of V.
- (b) im T is a subspace of W.

Proof. Let 0_V and 0_W be the zeros in V and W, respectively.

- (a) By condition (a) in the definition of linear transformation, T is a group homomorphism. To show: (aa) If $k_1, k_2 \in \ker T$ then $k_1 + k_2 \in \ker T$.
 - (ab) $0_V \in \ker T$. (ac) If $k \in \ker T$ then $-k \in \ker T$. (ad) If $c \in \mathbb{F}$ and $k \in \ker T$ then $ck \in \ker T$.
 - (aa) Assume $k_1, k_2 \in \ker T$. Then $T(k_1) = 0_W$ and $T(k_2) = 0_W$. By condition (a) in the definition of a linear transformation,

$$T(k_1 + k_2) = T(k_1) + T(k_2) = 0 + 0 = 0.$$

So $k_1 + k_2 \in \ker T$.

- (ab) By Proposition 9.7(a), $T(0_V) = 0_W$. So $0_V \in \ker T$.
- (ac) Assume $k \in \ker T$. By Proposition 9.7(b), T(-k) = -T(k). So $T(-k) = -T(k) = -0_W = 0_W$, and $-0_W = 0_W$ since $0_W + 0_W = 0_W$. So $-k \in \ker T$.
- (ad) Assume $c \in \mathbb{F}$ and $k \in \ker T$.

Then, by the definition of linear transformation,

$$T(ck) = cT(k) = c 0_W = 0_W$$
, and $c 0_W = 0_W$,

by adding $-c 0_W$ to each side of $c 0_W + c 0_W = c(0_W + 0_W) = c 0_W$. So $T(ck) = 0_W$ and $ck \in \ker T$.

So ker T is a subspace of V.

- (b) By condition (a) in the definition of an \mathbb{F} -linear transformation, T is a group homomorphism.
 - To show: (ba) If $w_1, w_2 \in \operatorname{im} T$ then $w_1 + w_2 \in \operatorname{im} T$. (bb) $0_W \in \operatorname{im} T$. (bc) If $w \in \operatorname{im} T$ then $-w \in \operatorname{im} T$. (bd) If $c \in \mathbb{F}$ and $w \in \operatorname{im} T$ then $ck \in \operatorname{im} T$.
 - (ba) Assume $w_1, w_2 \in \text{im } T$. Then there exist $v_1, v_2 \in V$ such that $T(v_1) = w_1$ and $T(v_2) = w_2$. By condition (a) in the definition of an \mathbb{F} -linear transformation,

$$T(v_1 + v_2) = T(v_1) + T(v_2) = w_1 + w_2.$$

So $w_1 + w_2 \in \operatorname{im} T$.

- (bb) By Proposition 9.7(a), $T(0_V) = 0_W$. So $0_W \in \text{im } T$.
- (bc) Assume $w \in \operatorname{im} T$. The there exists $v \in V$ such that T(v) = w. By Proposition 9.7(b), T(-v) = -T(v) = -w. So $-w \in \operatorname{im} T$.
- (bd) To show: If $c \in \mathbb{F}$ and $a \in \operatorname{im} T$ then $ca \in \operatorname{im} T$. Assume $c \in \mathbb{F}$ and $c \in \operatorname{im} T$. Then there exists $v \in V$ such that a = T(v). By the definition of an \mathbb{F} -linear transformation,

$$ca = cT(v) = T(cv).$$

So $ca \in \operatorname{im} T$.

So im T is a subspace of W.

Proposition 9.9. Let $T: V \to W$ be an \mathbb{F} -linear transformation. Let 0_V be the zero in V. Then

(a) ker T = (0_V) if and only if T is injective.
(b) imT = W if and only if T is surjective.

Proof. Let 0_V and 0_W be the zeros in V and W respectively.

(a) \implies : Assume ker $T = (0_V)$. To show: If $T(v_1) = T(v_2)$ then $v_1 = v_2$. Assume $T(v_1) = T(v_2)$. Since T is an \mathbb{F} -linear transformation then

$$0_W = T(v_1) - T(v_2) = T(v_1 - v_2).$$

So $v_1 - v_2 \in \ker T$. Since $\ker T = (0_V)$ then $v_1 - v_2 = 0_V$. So $v_1 = v_2$. So T is injective.

 $\begin{array}{l} \Leftarrow: \text{ Assume } T \text{ is injective} \\ \text{To show: (aa) } (0_V) \subseteq \ker T. \\ \text{ (ab) } \ker T \subseteq (0_V). \end{array}$

- (aa) Since $T(0_V) = 0_W$ then $0_V \in \ker T$. So $(0_V) \subseteq \ker T$.
- (ab) Let $k \in \ker T$. Then $T(k) = 0_W$. So $T(k) = T(0_V)$. Thus, since T is injective then $k = 0_V$. So $\ker T \subseteq (0_V)$.

So ker $T = (0_V)$.

(b)
$$\implies$$
: Assume im $T = W$.

To show: If $w \in W$ then there exists $v \in V$ such that T(v) = w. Assume $w \in W$. Then $w \in \operatorname{im} T$. So there exists $v \in V$ such that T(v) = w. So T is surjective.

 $\iff: \text{ Assume } T \text{ is surjective.}$ To show: (ba) $\operatorname{im} T \subseteq W$. (bb) $W \subseteq \operatorname{im} T$.

- (ba) Let $x \in \text{im } T$. Then there exists $v \in V$ such that x = T(v). By the definition of $T, T(v) \in W$. So $x \in W$. So im $T \subseteq W$.
- (bb) Assume $x \in W$. Since T is surjective there exists $v \in V$ such that T(v) = x. So $x \in \operatorname{im} T$. So $W \subseteq \operatorname{im} T$.

So im T = W.

Proposition 9.10. Let V be an \mathbb{F} -vector space and let B be a subset of V. The following are equivalent:

- (a) B is a basis of V.
- (b) B is a minimal element of $\{S \subseteq V \mid span_{\mathbb{F}}(S) = V\}$.
- (c) B is a maximal element of $\{L \subseteq V \mid L \text{ is linearly independent}\}$.

(In (b) and (c) the ordering is by inclusion.)

Proof.

(b) \Rightarrow (a): Let $S \subseteq V$ such that $\operatorname{span}_{\mathbb{F}}(S) = V$.

To show: If S is minimal such that $\operatorname{span}_{\mathbb{F}}(V)$ then S is a basis.

To show: If S is minimal such that $\operatorname{span}_{\mathbb{F}}(V)$ then S is linearly independent.

Proof by contrapositive.

To show: If S is not linearly independent then S is not minimal such that $\operatorname{span}_{\mathbb{F}}(S) = V$. Assume S is not linearly independent.

To show: There exists $s \in S$ such that $\operatorname{span}_{\mathbb{F}}(S - \{s\}) = V$.

Since S is linearly independent then there exist $k \in \mathbb{Z}_{>0}$ and $s_1, \ldots, s_k \in S$ and $c_1, \ldots, c_k \in \mathbb{F}$ and $i \in \{1, \ldots, k\}$ such that $c_1 s_1 + \cdots + c_k s_k = 0$ and $c_i \neq 0$.

Let
$$s = s_i$$

Using that \mathbb{F} is a field and $c_i \neq 0$ then

$$s = s_i = c_i^{-1} (c_1 s_1 + \dots + c_{i-1} s_{i-1} + c_{i+1} s_{i+1} + \dots + s_k c_k)$$

= $c_i^{-1} c_1 s_1 + \dots + c_i^{-1} c_{i-1} s_{i-1} + c_i^{-1} c_{i+1} s_{i+1} + \dots + c_i^{-1} c_k s_k.$

So $V = \operatorname{span}_{\mathbb{F}}(S) = \operatorname{span}_{\mathbb{F}}(S - \{s\}).$

So S is not minimal such that $\operatorname{span}_{\mathbb{F}}(S) = V$.

(a) \Rightarrow (b): Proof by contrapositive.

To show: If B is not minimal element of $\{S \subseteq V \mid \operatorname{span}_{\mathbb{F}}(S) = V\}$ then B is not a basis of V. Assume B is not minimal element of $\{S \subseteq V \mid \operatorname{span}_{\mathbb{F}}(S) = V\}$. So there exists $b \in B$ such that $\operatorname{span}_{\mathbb{F}}(B - \{b\}) \neq V$. To show: (aa) $B \in \{S \subseteq V \mid \operatorname{span}_{\mathbb{F}}(S) = V\}$.

(ab) If
$$b \in B$$
 then $B - \{b\} \notin \{S \subseteq V \mid \operatorname{span}_{\mathbb{F}}(S) = V\}.$

- (aa) Since $\operatorname{span}_{\mathbb{F}}(B) = V$ then $B \in \{S \subseteq V \mid \operatorname{span}_{\mathbb{F}}(S) = V\}$.
- (ab) Assume $b \in B$.

To show: $B - \{b\} \notin \{S \subseteq V \mid \operatorname{span}_{\mathbb{F}}(S) = V\}$. To show: $\operatorname{span}_{\mathbb{F}}(B - \{b\}) \neq V$. Since $\operatorname{span}_{\mathbb{F}}(B) = V$ then there exist $k \in \mathbb{Z}_{>0}, b_1, \ldots, b_k \in B$ and $c_1, \ldots, c_k \in \mathbb{F}$ such that $b = c_1b_1 + \cdots + c_kb_k$. So $0 = c_1b_1 + \cdots + c_kb_k + (-1)b$.

(a) \Rightarrow (c): Assume *B* is a basis of *V*.

Since B is linearly independent then $B \in \{L \subseteq V \mid L \text{ is linearly independent}\}$. To show: If $v \in V$ and $v \notin B$ then $B \cup \{v\}$ is not linearly independent. Assume $v \in V$ and $v \notin B$. Since $\operatorname{span}_{\mathbb{F}}(B) = V$ then there exists $k \in \mathbb{Z}_{>0}$ and $b_1, \ldots, b_k \in B$ and $c_1, \ldots, c_k \in \mathbb{F}$ such that $v = c_1b_1 + \ldots + c_kb_k$. So $0 = c_1b_1 + \cdots + c_kb_k + (-1)v$. So $B \cup \{v\}$ is not linearly independent.

(c) \Rightarrow (a): Assume S is a maximal element of $\{L \subseteq V \mid L \text{ is linearly independent}\}$.

To show: $\operatorname{span}_{\mathbb{F}}(S) = V$. To show: $V \subseteq \operatorname{span}_{\mathbb{F}}(S)$. Let $v \in V$. To show: $v \in \operatorname{span}_{\mathbb{F}}(S)$. Case 1: $v \in S$. Then $v \in \operatorname{span}_{\mathbb{F}}(S)$. Case 2: $v \notin S$. Then $S \cup \{v\}$ is not linearly independent and S is linearly independent. So there exist $k \in \mathbb{Z}_{>0}$ and $s_1, \ldots, s_k \in S$ and $c_0, c_1, \ldots, c_k \in \mathbb{F}$ such that

$$c_0 \neq 0$$
 and $c_0 v + c_1 s_1 + \dots + c_k s_k = 0.$

Since \mathbb{F} is a field and $c_0 \neq 0$ then

$$v = (-c_0^{-1}c_1)s_1 + \dots + (-c_0^{-1}c_k)s_k$$

So $v \in \operatorname{span}_{\mathbb{F}}(S)$. So $V \subseteq \operatorname{span}_{\mathbb{F}}(S)$ and $V = \operatorname{span}_{\mathbb{F}}(S)$. So S is linearly independent and $\operatorname{span}_{\mathbb{F}}(S) = V$. So S is a basis of V.

Theorem 9.11. Let V be an \mathbb{F} -vector space. Then

- (a) V has a basis, and
- (b) Any two bases of V have the same number of elements.

Proof.

(a) The idea is to use Zorn's lemma on the set $\{L \subseteq V \mid L \text{ is linearly independent}\}$, ordered by inclusion. We will not prove Zorn's lemma, we will assume it. Zorn's lemma is equivalent to the axiom of choice. For a proof see Isaacs book Isa §11D].

Zorn's Lemma. If S is a nonempty poset such that every chain in S has an upper bound then S has a maximal element.

Let $v \in V$ such that $v \neq 0$. Then $L = \{v\}$ is linearly independent. So $\{L \subseteq V \mid L \text{ is linearly independent}\}$ is not empty. To show: If $\cdots \subseteq S_{k-1} \subseteq S_k \subseteq S_{k+1} \subseteq \cdots$ chain of linearly independent subsets of V then there exists a linearly independent set S that contains all the S_k .

Assume $\cdots \subseteq S_{k-1} \subseteq S_k \subseteq S_{k+1} \subseteq \cdots$ is a chain of linearly independent subsets of V.

Let $L = \bigcup_k S_k$.

To show L is linearly independent.

Assume $\ell \in \mathbb{Z}_{>0}$ and $s_1, \ldots, s_\ell \in L$.

Then there exists k such that $s_1, \ldots, s_\ell \in S_k$.

Since S_k is linearly independent then if $c_1, \ldots, c_\ell \in \mathbb{F}$ and $c_1s_1 + \cdots + c_\ell s_\ell = 0$ then $c_1 = 0$, $c_2 = 0, \ldots, c_\ell = 0$.

So L is linearly independent.

So, if $\cdots \subseteq S_{k-1} \subseteq S_k \subseteq S_{k+1} \subseteq \cdots$ chain of linearly independent subsets of V then there exists a linearly independent set B that contains all the S_k .

Thus, by Zorn's lemma, $\{L \subseteq V \mid L \text{ is linearly independent}\}$ has a maximal element B.

By Proposition 9.3, B is a basis of V.

(b) Let B and C be bases of V.

Case 1: V has a basis B with $Card(B) < \infty$.

Let $b \in B$.

Then there exists $c \in C$ such that $c \notin \operatorname{span}_{\mathbb{F}}(B - \{b\})$.

Then $B_1 = (B - \{b\}) \cup \{c\}$ is a basis with the same cardinality as B.

Since B is finite then, by repeating this process, we can, after a finite number of steps, create a basis B' of V such that $B' \subseteq C$ and Card(B') = Card(B).

Thus $\operatorname{Card}(B) = \operatorname{Card}(B') \leq \operatorname{Card}(C)$.

A similar argument with C in place of B gives that $Card(B) \ge Card(C)$. So Card(B) = Card(C).

Case 2: V has an infinite basis B. Let C be a basis of V.

Define $P_{cb} \in \mathbb{F}$ for $c \in C$ and $b \in B$ by

$$b = \sum_{c \in C} P_{cb}c$$
, and let $S_b = \{c \in C \mid P_{cb} \neq 0\}$ for $b \in B$.

If $b \in B$ then S_b is a finite subset of C and

 $C = \bigcup_{b \in B} S_b$, since C is a minimal spanning set.

So $\operatorname{Card}(C) \leq \max\{\operatorname{Card}(S_b) \mid b \in B\} \leq \aleph_0 \operatorname{Card}(B)$. A similar argument with B and C switched shows that $\operatorname{Card}(B) \leq \aleph_0 \operatorname{Card}(C)$. So $\operatorname{Card}(C) \leq \aleph_0 \operatorname{Card}(B) = \operatorname{Card}(B) \leq \aleph_0 \operatorname{Card}(C) = \operatorname{Card}(C)$. Since $\operatorname{Card}(C) \leq \operatorname{Card}(B) \leq \operatorname{Card}(C)$ then $\operatorname{Card}(C) = \operatorname{Card}(B)$.

Proposition 9.12. Let V and W and Z be \mathbb{F} -vector spaces with bases B, C and D, respectively. Let

 $f: V \to W, \quad g: V \to W, \quad h: W \to Z$ be linear transformations

and let $c \in \mathbb{F}$. Then

$$(cf)_{CB} = c \cdot f_{CB}, \qquad f_{CB} + g_{CB} = (f+g)_{CB} \qquad and \qquad (h \circ g)_{DB} = h_{DC}g_{CB}.$$

Proof. Let $b \in B$ and $c' \in C$. Taking the coefficient of c' on each side of

$$\sum_{c \in C} (\alpha f)_{CB}(c,b)c = (\alpha f)(b) = \alpha \cdot f(b) = \alpha \cdot \left(\sum_{c \in C} f_{CB}(c,b)c\right) = \sum_{c \in C} \alpha f_{CB}(c,b)c$$

gives $(\alpha f)_{CB}(c', b) = \alpha \cdot f_{CB}(c', b)$. So $(\alpha f)_{CB} = \alpha \cdot f_{CB}$.

Let $b \in B$ and $c' \in C$. Taking the coefficient of c' on each side of

$$\sum_{c \in C} (f+g)_{CB}(c,b)c = (f+g)(b) = f(b) + g(b) = \sum_{c \in C} (f_{CB}(c,b)c + \sum_{c \in C} g_{CB}(c,b)c) = \sum_{c \in C} (f_{CB}(c,b)c + g_{CB}(c,b)c + g_{CB}(c,b)c) = \sum_{c \in C} (f_{CB}(c,b) + g_{CB}(c,b)$$

gives $(f_{CB} + g_{CB})(c', b) = f_{CB}(c', b) + g_{CB}(c', b)$. So $f_{CB} + g_{CB} = (f + g)_{CB}$.

Let $b \in B$ and $d' \in D$. Taking the coefficient of d' on each side of

$$\sum_{d \in D} (h \circ g)_{DB}(d, b)d = (h \circ g)(b) = h(g(b)) = h\left(\sum_{c \in C} g_{CB}(c, b)c\right)$$
$$= \sum_{c \in C} g_{CB}(c, b)h(c) = \sum_{c \in C} \sum_{d \in D} g_{CB}(c, b)h_{DC}(d, c)d,$$

gives $(h \circ g)_{DB}(d', b) = \sum_{c \in C} \sum_{d \in D} h_{DC}(d, c)g_{CB}(c, b) = (h_{DC}g_{CB})(d', b).$ So $(h \circ g)_{DB} = (h_{DC}g_{CB}).$

Proposition 9.13. Let $g: V \to W$ and $f: V \to V$ be \mathbb{F} -linear transformations. Let

 B_1 and B_2 be bases of V, and let C_1 and C_2 be bases of W,

and let $P_{B_1B_2}$ and $P_{C_2C_1}$ be the change of basis matrices defined as in (9.1). Then

$$g_{C_2B_2} = P_{C_2C_1}g_{C_1B_1}P_{B_1B_2}$$
 and $f_{B_2B_2} = P_{B_1B_2}^{-1}f_{B_1B_1}P_{B_1B_2}$.

Proof. Let $\beta, \beta' \in B_2$. Comparing coefficients of β' on each side of

$$\beta = \sum_{b \in B_1} P_{B_1 B_2}(b, \beta) b = \sum_{b \in B_1} P_{B_1 B_2}(b, \beta) \sum_{\beta' \in B_2} P_{B_2 B_1}(\beta', b) \beta'$$
$$= \sum_{b \in B_1} \sum_{\beta' \in B_2} P_{B_2 B_1}(\beta', b) P_{B_1 B_2}(b, \beta) \beta' = \sum_{b \in B_1} \sum_{\beta' \in B_2} (P_{B_2 B_1} P_{B_1 B_2})(\beta', \beta) \beta'$$

gives

$$(P_{B_2B_1}P_{B_1B_2})(\beta',\beta) = \delta_{\beta'\beta}.$$

So $P_{B_2B_1} = P_{B_1B_2}^{-1}$. Let $\beta \in B_1$ and $c \in B_2$. Taking the coefficient of b' on each side of

$$f(c) = \sum_{c' \in B_2} f_{B_2 B_2}(c', c)c' = \sum_{b' \in B_1} f_{B_2 B_2}(c', c)P_{B_1 B_2}(b', c')b'$$

and

$$f(c) = f\left(\sum_{b \in B_1} P_{B_1 B_2}(b, c)b\right) = \sum_{b \in B_1} P_{B_1 B_2}(b, c)f(b) = \sum_{b \in B_1} P_{B_1 B_2}(b, c)\sum_{b' \in B_1} f_{B_1 B_1}(b', b)b'$$

gives

$$(P_{B_1B_2}f_{B_2B_2})(\beta,b) = (f_{B_1B_1}P_{B_1B_2})(\beta,b).$$

So

$$P_{B_1B_2}f_{B_2B_2} = f_{B_1B_1}P_{B_1B_2}$$
 and thus $f_{B_2B_2} = P_{B_1B_2}^{-1}f_{B_1B_1}P_{B_1B_2}$.

Let $\gamma' \in C_2$ and $\beta \in B_2$. Taking the coefficient of γ on each side of

$$\begin{split} \sum_{\gamma \in C_2} g_{C_2 B_2}(\gamma, \beta) \gamma &= g(\beta) = g(\sum_{b \in B_1} P_{B_1 B_2}(b, \beta) b) = \sum_{b \in B_1} P_{B_1 B_2}(b, \beta) g(b) \\ &= \sum_{b \in B_1} P_{B_1 B_2}(b, \beta) \sum_{c \in C_1} g_{C_1 B_1}(c, b) c \\ &= \sum_{b \in B_1} P_{B_1 B_2}(b, \beta) \sum_{c \in C_1} g_{C_1 B_1}(c, b) \sum_{\gamma \in C_2} P_{C_2 C_1}(\gamma, c) \gamma \\ &= \sum_{b \in B_1, c \in C_1, \gamma \in C_2} P_{C_2 C_1}(\gamma, c) g_{C_1 B_1}(c, b) P_{B_1 B_2}(b, \beta) \gamma \\ &= \sum_{\gamma \in C_2} (P_{C_2 C_1} g_{C_1 B_1} P_{B_1 B_2})(\gamma, \beta) \gamma \end{split}$$

gives $g_{C_2B_2}(\gamma',\beta) = (P_{C_2C_1}g_{C_1B_1}P_{B_1B_2})(\gamma',\beta)$. So $g_{C_2B_2} = P_{C_2C_2}g_{C_1B_1}P_{B_1B_2}$.

Proposition 9.14. Let $P \in M_n(\mathbb{F})$. The matrix P is invertible if and only if the columns of P are linearly independent in \mathbb{F}^n .

Proof.

 \Rightarrow : Assume *P* is invertible. Let p_1, \ldots, p_n be the columns of *P*. To show: $\{p_1, \ldots, p_n\}$ is linearly independent. Assume $c_1, \ldots, c_n \in \mathbb{F}$ and $c_1p_1 + \cdots + c_np_n = 0$. Let $c = (c_1, \ldots, c_n)^t \in \mathbb{F}^n$. Since $c_1p_1 + \dots + c_np_n = 0$ then Pc = 0. So $c = P^{-1}Pc = P^{-1}0 = 0$. So $c_1 = 0, \ldots, c_n = 0$. \Leftarrow : Assume the columns of *P* are linearly independent. To show: There exists $Q \in M_n(\mathbb{F})$ such that QP = 1. Let p_1, \ldots, p_n be the columns of P. Since $B = \{p_1, \ldots, p_n\}$ is linearly independent and $\dim(\mathbb{F}^n) = n$ then B is a maximal linearly independent set. Thus, by Theorem 9.3, B is a basis. Let $S = \{e_1, \ldots, e_n\}$ where e_i has 1 in the *i*th spot and 0 elsewhere. Then $P = P_{BS}$, the change of basis matrix from S to B. Let $Q = P_{SB}$, the change of basis matrix from B to S. Then $QP = P_{SB}P_{BS} = P_{SS} = 1$. So P is invertible.