9.6 Some proofs

Proposition 9.7. Let $T: V \rightarrow W$ be an \mathbb{F}-linear transformation. Let 0_{V} and 0_{W} be the zeros for V and W respectively. Then
(a) $T\left(0_{V}\right)=0_{W}$, and
(b) If $v \in V$ then $T(-v)=-T(v)$.

Proof.
(a) Add $-T\left(0_{V}\right)$ to both sides of the following equation,

$$
T\left(0_{V}\right)=T\left(0_{V}+0_{V}\right)=T\left(0_{V}\right)+T\left(0_{V}\right) .
$$

(b) Since $T(v)+T(-v)=T(v+(-v))=T\left(0_{V}\right)=0_{W}$ and

$$
T(-v)+T(v)=T((-v)+v)+T\left(0_{V}\right)=0_{W}
$$

then $-T(v)=T(-v)$.

Proposition 9.8. Let $T: V \rightarrow W$ be an \mathbb{F}-linear transformation. Then
(a) $\operatorname{ker} T$ is a subspace of V.
(b) $\operatorname{im} T$ is a subspace of W.

Proof. Let 0_{V} and 0_{W} be the zeros in V and W, respectively.
(a) By condition (a) in the definition of linear transformation, T is a group homomorphism.

To show: (aa) If $k_{1}, k_{2} \in \operatorname{ker} T$ then $k_{1}+k_{2} \in \operatorname{ker} T$.
(ab) $0_{V} \in \operatorname{ker} T$.
(ac) If $k \in \operatorname{ker} T$ then $-k \in \operatorname{ker} T$.
(ad) If $c \in \mathbb{F}$ and $k \in \operatorname{ker} T$ then $c k \in \operatorname{ker} T$.
(aa) Assume $k_{1}, k_{2} \in \operatorname{ker} T$.
Then $T\left(k_{1}\right)=0_{W}$ and $T\left(k_{2}\right)=0_{W}$.
By condition (a) in the definition of a linear transformation,

$$
T\left(k_{1}+k_{2}\right)=T\left(k_{1}\right)+T\left(k_{2}\right)=0+0=0 .
$$

So $k_{1}+k_{2} \in \operatorname{ker} T$.
(ab) By Proposition 9.7(a), $T\left(0_{V}\right)=0_{W}$.
So $0_{V} \in \operatorname{ker} T$.
(ac) Assume $k \in \operatorname{ker} T$.
By Proposition 9.7(b), $T(-k)=-T(k)$.
So $T(-k)=-T(k)=-0_{W}=0_{W}$, and $-0_{W}=0_{W}$ since $0_{W}+0_{W}=0_{W}$.
So $-k \in \operatorname{ker} T$.
(ad) Assume $c \in \mathbb{F}$ and $k \in \operatorname{ker} T$.

Then, by the definition of linear transformation,

$$
T(c k)=c T(k)=c 0_{W}=0_{W}, \quad \text { and } \quad c 0_{W}=0_{W},
$$

by adding $-c 0_{W}$ to each side of $c 0_{W}+c 0_{W}=c\left(0_{W}+0_{W}\right)=c 0_{W}$.
So $T(c k)=0_{W}$ and $c k \in \operatorname{ker} T$.
So $\operatorname{ker} T$ is a subspace of V.
(b) By condition (a) in the definition of an \mathbb{F}-linear transformation, T is a group homomorphism.

To show: (ba) If $w_{1}, w_{2} \in \operatorname{im} T$ then $w_{1}+w_{2} \in \operatorname{im} T$.
(bb) $0_{W} \in \operatorname{im} T$.
(bc) If $w \in \operatorname{im} T$ then $-w \in \operatorname{im} T$.
(bd) If $c \in \mathbb{F}$ and $w \in \operatorname{im} T$ then $c k \in \operatorname{im} T$.
(ba) Assume $w_{1}, w_{2} \in \operatorname{im} T$.
Then there exist $v_{1}, v_{2} \in V$ such that $T\left(v_{1}\right)=w_{1}$ and $T\left(v_{2}\right)=w_{2}$.
By condition (a) in the definition of an \mathbb{F}-linear transformation,

$$
T\left(v_{1}+v_{2}\right)=T\left(v_{1}\right)+T\left(v_{2}\right)=w_{1}+w_{2} .
$$

So $w_{1}+w_{2} \in \operatorname{im} T$.
(bb) By Proposition 9.7(a), $T\left(0_{V}\right)=0_{W}$.
So $0_{W} \in \operatorname{im} T$.
(bc) Assume $w \in \operatorname{im} T$.
The there exists $v \in V$ such that $T(v)=w$.
By Proposition 9.7(b), $T(-v)=-T(v)=-w$.
So $-w \in \operatorname{im} T$.
(bd) To show: If $c \in \mathbb{F}$ and $a \in \operatorname{im} T$ then $c a \in \operatorname{im} T$.
Assume $c \in \mathbb{F}$ and $c \in \operatorname{im} T$.
Then there exists $v \in V$ such that $a=T(v)$.
By the definition of an \mathbb{F}-linear transformation,

$$
c a=c T(v)=T(c v) .
$$

So $c a \in \operatorname{im} T$.
So im T is a subspace of W.

Proposition 9.9. Let $T: V \rightarrow W$ be an \mathbb{F}-linear transformation. Let 0_{V} be the zero in V. Then
(a) $\operatorname{ker} T=\left(0_{V}\right)$ if and only if T is injective.
(b) $\operatorname{im} T=W$ if and only if T is surjective.

Proof. Let 0_{V} and 0_{W} be the zeros in V and W respectively.
(a) \Longrightarrow : Assume ker $T=\left(0_{V}\right)$.

To show: If $T\left(v_{1}\right)=T\left(v_{2}\right)$ then $v_{1}=v_{2}$.
Assume $T\left(v_{1}\right)=T\left(v_{2}\right)$.

Since T is an \mathbb{F}-linear transformation then

$$
0_{W}=T\left(v_{1}\right)-T\left(v_{2}\right)=T\left(v_{1}-v_{2}\right) .
$$

So $v_{1}-v_{2} \in \operatorname{ker} T$.
Since ker $T=\left(0_{V}\right)$ then $v_{1}-v_{2}=0_{V}$.
So $v_{1}=v_{2}$.
So T is injective.
\Longleftarrow : Assume T is injective
To show: $(\mathrm{aa})\left(0_{V}\right) \subseteq \operatorname{ker} T$.
(ab) $\operatorname{ker} T \subseteq\left(0_{V}\right)$.
(aa) Since $T\left(0_{V}\right)=0_{W}$ then $0_{V} \in \operatorname{ker} T$.
So $\left(0_{V}\right) \subseteq \operatorname{ker} T$.
(ab) Let $k \in \operatorname{ker} T$.
Then $T(k)=0_{W}$.
So $T(k)=T\left(0_{V}\right)$.
Thus, since T is injective then $k=0_{V}$.
So $\operatorname{ker} T \subseteq\left(0_{V}\right)$.
So ker $T=\left(0_{V}\right)$.
(b) \Longrightarrow : Assume im $T=W$.

To show: If $w \in W$ then there exists $v \in V$ such that $T(v)=w$.
Assume $w \in W$.
Then $w \in \operatorname{im} T$.
So there exists $v \in V$ such that $T(v)=w$.
So T is surjective.
\Longleftarrow : Assume T is surjective.
To show: (ba) im $T \subseteq W$.
(bb) $W \subseteq \operatorname{im} T$.
(ba) Let $x \in \operatorname{im} T$.
Then there exists $v \in V$ such that $x=T(v)$.
By the definition of $T, T(v) \in W$.
So $x \in W$.
So im $T \subseteq W$.
(bb) Assume $x \in W$.
Since T is surjective there exists $v \in V$ such that $T(v)=x$.
So $x \in \operatorname{im} T$.
So $W \subseteq \operatorname{im} T$.
So $\operatorname{im} T=W$.

Proposition 9.10. Let V be an \mathbb{F}-vector space and let B be a subset of V. The following are equivalent:
(a) B is a basis of V.
(b) B is a minimal element of $\left\{S \subseteq V \mid \operatorname{span}_{\mathbb{F}}(S)=V\right\}$.
(c) B is a maximal element of $\{L \subseteq V \mid L$ is linearly independent $\}$.
(In (b) and (c) the ordering is by inclusion.)
Proof.
(b) $\Rightarrow(\mathrm{a})$: Let $S \subseteq V$ such that $\operatorname{span}_{\mathbb{F}}(S)=V$.

To show: If S is minimal such that $\operatorname{span}_{\mathbb{F}}(V)$ then S is a basis.
To show: If S is minimal such that $\operatorname{span}_{\mathbb{F}}(V)$ then S is linearly independent.
Proof by contrapositive.
To show: If S is not linearly independent then S is not minimal such that $\operatorname{span}_{\mathbb{F}}(S)=V$.
Assume S is not linearly independent.
To show: There exists $s \in S$ such that $\operatorname{span}_{\mathbb{F}}(S-\{s\})=V$.
Since S is linearly independent then there exist $k \in \mathbb{Z}_{>0}$ and $s_{1}, \ldots, s_{k} \in S$ and $c_{1}, \ldots, c_{k} \in \mathbb{F}$ and $i \in\{1, \ldots, k\}$ such that $c_{1} s_{1}+\cdots+c_{k} s_{k}=0$ and $c_{i} \neq 0$.
Let $s=s_{i}$.
Using that \mathbb{F} is a field and $c_{i} \neq 0$ then

$$
\begin{aligned}
s=s_{i} & =c_{i}^{-1}\left(c_{1} s_{1}+\cdots+c_{i-1} s_{i-1}+c_{i+1} s_{i+1}+\cdots+s_{k} c_{k}\right) \\
& =c_{i}^{-1} c_{1} s_{1}+\cdots+c_{i}^{-1} c_{i-1} s_{i-1}+c_{i}^{-1} c_{i+1} s_{i+1}+\cdots+c_{i}^{-1} c_{k} s_{k}
\end{aligned}
$$

So $V=\operatorname{span}_{\mathbb{F}}(S)=\operatorname{span}_{\mathbb{F}}(S-\{s\})$.
So S is not minimal such that $\operatorname{span}_{\mathbb{F}}(S)=V$.
(a) $\Rightarrow(\mathrm{b})$: Proof by contrapositive.

To show: If B is not minimal element of $\left\{S \subseteq V \mid \operatorname{span}_{\mathbb{F}}(S)=V\right\}$ then B is not a basis of V.
Assume B is not minimal element of $\left\{S \subseteq V \mid \operatorname{span}_{\mathbb{F}}(S)=V\right\}$.
So there exists $b \in B$ such that $\operatorname{span}_{\mathbb{F}}(B-\{b\}) \neq V$.
To show: (aa) $B \in\left\{S \subseteq V \mid \operatorname{span}_{\mathbb{F}}(S)=V\right\}$.
(ab) If $b \in B$ then $B-\{b\} \notin\left\{S \subseteq V \mid \operatorname{span}_{\mathbb{F}}(S)=V\right\}$.
(aa) Since $\operatorname{span}_{\mathbb{F}}(B)=V$ then $B \in\left\{S \subseteq V \mid \operatorname{span}_{\mathbb{F}}(S)=V\right\}$.
(ab) Assume $b \in B$.
To show: $B-\{b\} \notin\left\{S \subseteq V \mid \operatorname{span}_{\mathbb{F}}(S)=V\right\}$.
To show: $\operatorname{span}_{\mathbb{F}}(B-\{b\}) \neq V$.
Since $\operatorname{span}_{\mathbb{F}}(B)=V$ then there exist $k \in \mathbb{Z}_{>0}, b_{1}, \ldots, b_{k} \in B$ and $c_{1}, \ldots, c_{k} \in \mathbb{F}$ such that $b=c_{1} b_{1}+\cdots c_{k} b_{k}$.
So $0=c_{1} b_{1}+\cdots+c_{k} b_{k}+(-1) b$.
(a) $\Rightarrow(\mathrm{c})$: Assume B is a basis of V.

Since B is linearly independent then $B \in\{L \subseteq V \mid L$ is linearly independent $\}$.
To show: If $v \in V$ and $v \notin B$ then $B \cup\{v\}$ is not linearly independent.

Assume $v \in V$ and $v \notin B$.
Since $\operatorname{span}_{\mathbb{F}}(B)=V$ then there exists $k \in \mathbb{Z}_{>0}$ and $b_{1}, \ldots, b_{k} \in B$ and $c_{1}, \ldots, c_{k} \in \mathbb{F}$ such that $v=c_{1} b_{1}+\ldots+c_{k} b_{k}$.
So $0=c_{1} b_{1}+\cdots+c_{k} b_{k}+(-1) v$.
So $B \cup\{v\}$ is not linearly independent.
(c) \Rightarrow (a): Assume S is a maximal element of $\{L \subseteq V \mid L$ is linearly independent $\}$.

To show: $\operatorname{span}_{\mathbb{F}}(S)=V$.
To show: $V \subseteq \operatorname{span}_{\mathbb{F}}(S)$.
Let $v \in V$.
To show: $v \in \operatorname{span}_{\mathbb{F}}(S)$.
Case 1: $v \in S$. Then $v \in \operatorname{span}_{\mathbb{F}}(S)$.
Case 2: $v \notin S$.
Then $S \cup\{v\}$ is not linearly independent and S is linearly independent.
So there exist $k \in \mathbb{Z}_{>0}$ and $s_{1}, \ldots, s_{k} \in S$ and $c_{0}, c_{1}, \ldots, c_{k} \in \mathbb{F}$ such that

$$
c_{0} \neq 0 \quad \text { and } \quad c_{0} v+c_{1} s_{1}+\cdots+c_{k} s_{k}=0
$$

Since \mathbb{F} is a field and $c_{0} \neq 0$ then

$$
v=\left(-c_{0}^{-1} c_{1}\right) s_{1}+\cdots+\left(-c_{0}^{-1} c_{k}\right) s_{k}
$$

So $v \in \operatorname{span}_{\mathbb{F}}(S)$.
So $V \subseteq \operatorname{span}_{\mathbb{F}}(S)$ and $V=\operatorname{span}_{\mathbb{F}}(S)$.
So S is linearly independent and $\operatorname{span}_{\mathbb{F}}(S)=V$.
So S is a basis of V.

Theorem 9.11. Let V be an \mathbb{F}-vector space. Then
(a) V has a basis, and
(b) Any two bases of V have the same number of elements.

Proof.
(a) The idea is to use Zorn's lemma on the set $\{L \subseteq V \mid L$ is linearly independent $\}$, ordered by inclusion. We will not prove Zorn's lemma, we will assume it. Zorn's lemma is equivalent to the axiom of choice. For a proof see Isaacs book Isa, §11D].

Zorn's Lemma. If S is a nonempty poset such that every chain in S has an upper bound then S has a maximal element.

Let $v \in V$ such that $v \neq 0$.
Then $L=\{v\}$ is linearly independent.
So $\{L \subseteq V \mid L$ is linearly independent $\}$ is not empty.

To show: If $\cdots \subseteq S_{k-1} \subseteq S_{k} \subseteq S_{k+1} \subseteq \cdots$ chain of linearly independent subsets of V then there exists a linearly independent set S that contains all the S_{k}.
Assume $\cdots \subseteq S_{k-1} \subseteq S_{k} \subseteq S_{k+1} \subseteq \cdots$ is a chain of linearly independent subsets of V.
Let $L=\bigcup_{k} S_{k}$.
To show L is linearly independent.
Assume $\ell \in \mathbb{Z}_{>0}$ and $s_{1}, \ldots, s_{\ell} \in L$.
Then there exists k such that $s_{1}, \ldots, s_{\ell} \in S_{k}$.
Since S_{k} is linearly independent then if $c_{1}, \ldots, c_{\ell} \in \mathbb{F}$ and $c_{1} s_{1}+\cdots+c_{\ell} s_{\ell}=0$ then $c_{1}=0$, $c_{2}=0, \ldots, c_{\ell}=0$.
So L is linearly independent.
So, if $\cdots \subseteq S_{k-1} \subseteq S_{k} \subseteq S_{k+1} \subseteq \cdots$ chain of linearly independent subsets of V then there exists a linearly independent set B that contains all the S_{k}.
Thus, by Zorn's lemma, $\{L \subseteq V \mid L$ is linearly independent $\}$ has a maximal element B.
By Proposition 9.3, B is a basis of V.
(b) Let B and C be bases of V.

Case 1: V has a basis B with $\operatorname{Card}(B)<\infty$.
Let $b \in B$.
Then there exists $c \in C$ such that $c \notin \operatorname{span}_{\mathbb{F}}(B-\{b\})$.
Then $B_{1}=(B-\{b\}) \cup\{c\}$ is a basis with the same cardinality as B.
Since B is finite then, by repeating this process, we can, after a finite number of steps, create a basis B^{\prime} of V such that $B^{\prime} \subseteq C$ and $\operatorname{Card}\left(B^{\prime}\right)=\operatorname{Card}(B)$.
Thus $\operatorname{Card}(B)=\operatorname{Card}\left(B^{\prime}\right) \leq \operatorname{Card}(C)$.
A similar argument with C in place of B gives that $\operatorname{Card}(B) \geq \operatorname{Card}(C)$.
So $\operatorname{Card}(B)=\operatorname{Card}(C)$.
Case 2: V has an infinite basis B.
Let C be a basis of V.
Define $P_{c b} \in \mathbb{F}$ for $c \in C$ and $b \in B$ by

$$
b=\sum_{c \in C} P_{c b} c, \quad \text { and let } \quad S_{b}=\left\{c \in C \mid P_{c b} \neq 0\right\} \quad \text { for } b \in B
$$

If $b \in B$ then S_{b} is a finite subset of C and

$$
C=\bigcup_{b \in B} S_{b}, \quad \text { since } C \text { is a minimal spanning set. }
$$

So $\operatorname{Card}(C) \leq \max \left\{\operatorname{Card}\left(S_{b}\right) \mid b \in B\right\} \leq \aleph_{0} \operatorname{Card}(B)$.
A similar argument with B and C switched shows that $\operatorname{Card}(B) \leq \aleph_{0} \operatorname{Card}(C)$.
So $\operatorname{Card}(C) \leq \aleph_{0} \operatorname{Card}(B)=\operatorname{Card}(B) \leq \aleph_{0} \operatorname{Card}(C)=\operatorname{Card}(C)$.
Since $\operatorname{Card}(C) \leq \operatorname{Card}(B) \leq \operatorname{Card}(C)$ then $\operatorname{Card}(C)=\operatorname{Card}(B)$.

Proposition 9.12. Let V and W and Z be \mathbb{F}-vector spaces with bases B, C and D, respectively. Let

$$
f: V \rightarrow W, \quad g: V \rightarrow W, \quad h: W \rightarrow Z \quad \text { be linear transformations }
$$

and let $c \in \mathbb{F}$. Then

$$
(c f)_{C B}=c \cdot f_{C B}, \quad f_{C B}+g_{C B}=(f+g)_{C B} \quad \text { and } \quad(h \circ g)_{D B}=h_{D C} g_{C B}
$$

Proof. Let $b \in B$ and $c^{\prime} \in C$. Taking the coefficient of c^{\prime} on each side of

$$
\sum_{c \in C}(\alpha f)_{C B}(c, b) c=(\alpha f)(b)=\alpha \cdot f(b)=\alpha \cdot\left(\sum_{c \in C} f_{C B}(c, b) c\right)=\sum_{c \in C} \alpha f_{C B}(c, b) c
$$

gives $(\alpha f)_{C B}\left(c^{\prime}, b\right)=\alpha \cdot f_{C B}\left(c^{\prime}, b\right)$.
So $(\alpha f)_{C B}=\alpha \cdot f_{C B}$.
Let $b \in B$ and $c^{\prime} \in C$. Taking the coefficient of c^{\prime} on each side of

$$
\begin{aligned}
\sum_{c \in C}(f+g)_{C B}(c, b) c & =(f+g)(b)=f(b)+g(b)=\sum_{c \in C}\left(f_{C B}(c, b) c+\sum_{c \in C} g_{C B}(c, b) c\right. \\
& =\sum_{c \in C}\left(f_{C B}(c, b) c+g_{C B}(c, b) c=\sum_{c \in C}\left(f_{C B}(c, b)+g_{C B}(c, b)\right) c\right.
\end{aligned}
$$

gives $\left(f_{C B}+g_{C B}\right)\left(c^{\prime}, b\right)=f_{C B}\left(c^{\prime}, b\right)+g_{C B}\left(c^{\prime}, b\right)$.
So $f_{C B}+g_{C B}=(f+g)_{C B}$.
Let $b \in B$ and $d^{\prime} \in D$. Taking the coefficient of d^{\prime} on each side of

$$
\begin{aligned}
\sum_{d \in D}(h \circ g)_{D B}(d, b) d & =(h \circ g)(b)=h(g(b))=h\left(\sum_{c \in C} g_{C B}(c, b) c\right) \\
& =\sum_{c \in C} g_{C B}(c, b) h(c)=\sum_{c \in C} \sum_{d \in D} g_{C B}(c, b) h_{D C}(d, c) d
\end{aligned}
$$

gives $(h \circ g)_{D B}\left(d^{\prime}, b\right)=\sum_{c \in C} \sum_{d \in D} h_{D C}(d, ' c) g_{C B}(c, b)=\left(h_{D C} g_{C B}\right)\left(d^{\prime}, b\right)$.
So $(h \circ g)_{D B}=\left(h_{D C} g_{C B}\right)$.
Proposition 9.13. Let $g: V \rightarrow W$ and $f: V \rightarrow V$ be \mathbb{F}-linear transformations. Let
B_{1} and B_{2} be bases of V, and let C_{1} and C_{2} be bases of W, and let $P_{B_{1} B_{2}}$ and $P_{C_{2} C_{1}}$ be the change of basis matrices defined as in 9.1. Then

$$
g_{C_{2} B_{2}}=P_{C_{2} C_{1}} g_{C_{1} B_{1}} P_{B_{1} B_{2}} \quad \text { and } \quad f_{B_{2} B_{2}}=P_{B_{1} B_{2}}^{-1} f_{B_{1} B_{1}} P_{B_{1} B_{2}}
$$

Proof. Let $\beta, \beta^{\prime} \in B_{2}$. Comparing coefficients of β^{\prime} on each side of

$$
\begin{aligned}
\beta & =\sum_{b \in B_{1}} P_{B_{1} B_{2}}(b, \beta) b=\sum_{b \in B_{1}} P_{B_{1} B_{2}}(b, \beta) \sum_{\beta^{\prime} \in B_{2}} P_{B_{2} B_{1}}\left(\beta^{\prime}, b\right) \beta^{\prime} \\
& =\sum_{b \in B_{1}} \sum_{\beta^{\prime} \in B_{2}} P_{B_{2} B_{1}}\left(\beta^{\prime}, b\right) P_{B_{1} B_{2}}(b, \beta) \beta^{\prime}=\sum_{b \in B_{1}} \sum_{\beta^{\prime} \in B_{2}}\left(P_{B_{2} B_{1}} P_{B_{1} B_{2}}\right)\left(\beta^{\prime}, \beta\right) \beta^{\prime}
\end{aligned}
$$

gives

$$
\left(P_{B_{2} B_{1}} P_{B_{1} B_{2}}\right)\left(\beta^{\prime}, \beta\right)=\delta_{\beta^{\prime} \beta} .
$$

So $P_{B_{2} B_{1}}=P_{B_{1} B_{2}}^{-1}$.
Let $\beta \in B_{1}$ and $c \in B_{2}$. Taking the coefficient of b^{\prime} on each side of

$$
f(c)=\sum_{c^{\prime} \in B_{2}} f_{B_{2} B_{2}}\left(c^{\prime}, c\right) c^{\prime}=\sum_{b^{\prime} \in B_{1}} f_{B_{2} B_{2}}\left(c^{\prime}, c\right) P_{B_{1} B_{2}}\left(b^{\prime}, c^{\prime}\right) b^{\prime}
$$

and

$$
f(c)=f\left(\sum_{b \in B_{1}} P_{B_{1} B_{2}}(b, c) b\right)=\sum_{b \in B_{1}} P_{B_{1} B_{2}}(b, c) f(b)=\sum_{b \in B_{1}} P_{B_{1} B_{2}}(b, c) \sum_{b^{\prime} \in B_{1}} f_{B_{1} B_{1}}\left(b^{\prime}, b\right) b^{\prime}
$$

gives

$$
\left(P_{B_{1} B_{2}} f_{B_{2} B_{2}}\right)(\beta, b)=\left(f_{B_{1} B_{1}} P_{B_{1} B_{2}}\right)(\beta, b) .
$$

So

$$
P_{B_{1} B_{2}} f_{B_{2} B_{2}}=f_{B_{1} B_{1}} P_{B_{1} B_{2}} \quad \text { and thus } \quad f_{B_{2} B_{2}}=P_{B_{1} B_{2}}^{-1} f_{B_{1} B_{1}} P_{B_{1} B_{2}} .
$$

Let $\gamma^{\prime} \in C_{2}$ and $\beta \in B_{2}$. Taking the coefficient of γ on each side of

$$
\begin{aligned}
\sum_{\gamma \in C_{2}} g_{C_{2} B_{2}}(\gamma, \beta) \gamma & =g(\beta)=g\left(\sum_{b \in B_{1}} P_{B_{1} B_{2}}(b, \beta) b\right)=\sum_{b \in B_{1}} P_{B_{1} B_{2}}(b, \beta) g(b) \\
& =\sum_{b \in B_{1}} P_{B_{1} B_{2}}(b, \beta) \sum_{c \in C_{1}} g_{C_{1} B_{1}}(c, b) c \\
& =\sum_{b \in B_{1}} P_{B_{1} B_{2}}(b, \beta) \sum_{c \in C_{1}} g_{C_{1} B_{1}}(c, b) \sum_{\gamma \in C_{2}} P_{C_{2} C_{1}}(\gamma, c) \gamma \\
& =\sum_{b \in B_{1}, c \in C_{1}, \gamma \in C_{2}} P_{C_{2} C_{1}}(\gamma, c) g_{C_{1} B_{1}}(c, b) P_{B_{1} B_{2}}(b, \beta) \gamma \\
& =\sum_{\gamma \in C_{2}}\left(P_{C_{2} C_{1}} g_{C_{1} B_{1}} P_{B_{1} B_{2}}\right)(\gamma, \beta) \gamma
\end{aligned}
$$

gives $g_{C_{2} B_{2}}\left(\gamma^{\prime}, \beta\right)=\left(P_{C_{2} C_{1}} g_{C_{1} B_{1}} P_{B_{1} B_{2}}\right)\left(\gamma^{\prime}, \beta\right)$. So $g_{C_{2} B_{2}}=P_{C_{2} C_{2}} g_{C_{1} B_{1}} P_{B_{1} B_{2}}$.
Proposition 9.14. Let $P \in M_{n}(\mathbb{F})$. The matrix P is invertible if and only if the columns of P are linearly independent in \mathbb{F}^{n}.

Proof.
\Rightarrow : Assume P is invertible. Let p_{1}, \ldots, p_{n} be the columns of P.
To show: $\left\{p_{1}, \ldots, p_{n}\right\}$ is linearly independent.
Assume $c_{1}, \ldots, c_{n} \in \mathbb{F}$ and $c_{1} p_{1}+\cdots+c_{n} p_{n}=0$.
Let $c=\left(c_{1}, \ldots, c_{n}\right)^{t} \in \mathbb{F}^{n}$.
Since $c_{1} p_{1}+\cdots+c_{n} p_{n}=0$ then $P c=0$.
So $c=P^{-1} P c=P^{-1} 0=0$.
So $c_{1}=0, \ldots, c_{n}=0$.
\Leftarrow : Assume the columns of P are linearly independent.
To show: There exists $Q \in M_{n}(\mathbb{F})$ such that $Q P=1$.
Let p_{1}, \ldots, p_{n} be the columns of P.
Since $B=\left\{p_{1}, \ldots, p_{n}\right\}$ is linearly independent and $\operatorname{dim}\left(\mathbb{F}^{n}\right)=n$ then B is a maximal linearly independent set.
Thus, by Theorem $9.3, B$ is a basis.
Let $S=\left\{e_{1}, \ldots, e_{n}\right\}$ where e_{i} has 1 in the i th spot and 0 elsewhere.
Then $P=P_{B S}$, the change of basis matrix from S to B.
Let $Q=P_{S B}$, the change of basis matrix from B to S.
Then $Q P=P_{S B} P_{B S}=P_{S S}=1$.
So P is invertible.

