6.3 Diagonalization

Theorem 6.3.

(a) Let $A \in M_{n}(\mathbb{F})$. The matrix A has n linearly independent eigenvectors $p_{1}, \ldots, p_{n} \in \mathbb{F}^{n}$ with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ if and only if $A=P D P^{-1}$ where,

$$
P=\left(\begin{array}{ccc}
\mid & & \mid \\
p_{1} & \cdots & p_{n} \\
\mid & & \mid
\end{array}\right) \quad \text { and } \quad D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)=\left(\begin{array}{ccc}
\lambda_{1} & & \\
& \ddots & \\
& & \lambda_{n}
\end{array}\right)
$$

so that p_{1}, \ldots, p_{n} are the columns of P and D is the diagonal matrix with diagonal entries $\lambda_{1}, \ldots, \lambda_{n}$. (b) Assume that the inner product on \mathbb{F}^{n} is given by (stdSinnprod). Let $A \in M_{n}(\mathbb{F})$. The matrix A has n orthonormal eigenvectors $q_{1}, \ldots, q_{n} \in \mathbb{F}^{n}$ with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ if and only if $A=Q D Q^{-1}$ and $Q Q^{t}=1$ where,

$$
Q=\left(\begin{array}{ccc}
\mid & & \mid \\
q_{1} & \cdots & q_{n} \\
\mid & & \mid
\end{array}\right) \quad \text { and } \quad D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)=\left(\begin{array}{ccc}
\lambda_{1} & & \\
& \ddots & \\
& & \lambda_{n}
\end{array}\right)
$$

so that u_{1}, \ldots, u_{n} are the columns of Q and D is the diagonal matrix with diagonal entries $\lambda_{1}, \ldots, \lambda_{n}$. (c) Assume that the inner product on \mathbb{F}^{n} is given by (stdHinnprod). Let $A \in M_{n}(\mathbb{F})$. The matrix A has n orthonormal eigenvectors $u_{1}, \ldots, u_{n} \in \mathbb{F}^{n}$ with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ if and only if $A=U D U^{-1}$ and $U \bar{U}^{t}=1$ where,

$$
U=\left(\begin{array}{ccc}
\mid & & \mid \\
u_{1} & \cdots & u_{n} \\
\mid & & \mid
\end{array}\right) \quad \text { and } \quad D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)=\left(\begin{array}{ccc}
\lambda_{1} & & \\
& \ddots & \\
& & \lambda_{n}
\end{array}\right)
$$

so that u_{1}, \ldots, u_{n} are the columns of U and D is the diagonal matrix with diagonal entries $\lambda_{1}, \ldots, \lambda_{n}$.

