4 Matrix groups: generators and relations

Let $n \in \mathbb{Z}_{>0}$ and let $E_{i j}$ be the matrix which has 1 in the (i, j) entry and all other entries 0 .

4.1 Diagonal matrices T_{n}

Let $\mathbb{F}^{\times}=\{d \in \mathbb{F} \mid d \neq 0\}$. Let $n \in \mathbb{Z}_{>0}$. Use the notation

$$
\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)=\left(\begin{array}{ccc}
d_{1} & & \\
& \ddots & \\
& & d_{n}
\end{array}\right), \quad \text { for } d_{1}, \ldots, d_{n} \in \mathbb{F}^{\times}
$$

so that d_{i} is the diagonal entry in the i th row and i th column and all other entries of $\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$ are 0 .

- An $n \times n$ diagonal matrix is an $n \times n$ matrix A such that if $i, j \in\{1, \ldots, n\}$ and $i \neq j$ then $A(i, j)=0$.
- The elementary diagonal matrices are the matrices

$$
h_{i}(d)=1+(-1+d) E_{i i}=\left(\begin{array}{ccccccc}
1 & & & & & & \\
& \ddots & & & & & \\
& & 1 & & & & \\
& & & d & & & \\
& & & & 1 & & \\
& & & & & \ddots & \\
& & & & & & 1
\end{array}\right), \quad \text { for } d \in \mathbb{F}^{\times} .
$$

- The diagonal torus is

$$
T_{n}=\left\{\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right) \mid d_{1}, \ldots, d_{n} \in \mathbb{F}^{\times}\right\}=\left\{h_{1}\left(d_{1}\right) \cdots h_{n}\left(d_{n}\right) \mid d_{1}, \ldots, d_{n} \in \mathbb{F}^{\times}\right\}
$$

Proposition 4.1. The diagonal torus T_{n} is presented by generators

$$
h_{i}(d), \quad \text { for } i \in\{1, \ldots, n\} \text { and } d \in \mathbb{F}^{\times} \text {, }
$$

with relations

$$
\begin{equation*}
h_{i}\left(d_{1}\right) h_{i}\left(d_{2}\right)=h_{i}\left(d_{1} d_{2}\right) \quad \text { and } \quad h_{i}\left(d_{1}\right) h_{j}\left(d_{2}\right)=h_{j}\left(d_{2}\right) h_{i}\left(d_{1}\right), \tag{Tnrels}
\end{equation*}
$$

for $i, j \in\{1, \ldots, n\}$ and $d_{1}, d_{2} \in \mathbb{F}^{\times}$.
Proof. Since $\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)=h_{1}\left(d_{1}\right) \cdots h_{n}\left(d_{n}\right)$ each element of T_{n} can be written in terms of the generators $h_{i}(d)$. Since

$$
\begin{aligned}
\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right) \operatorname{diag}\left(e_{1}, \ldots, e_{n}\right) & =h_{1}\left(d_{1}\right) \cdots h_{n}\left(d_{n}\right) h_{1}\left(e_{1}\right) \cdots h_{n}\left(e_{n}\right) \\
& =h_{1}\left(d_{1}\right) h_{1}\left(e_{1}\right) \cdots h_{n}\left(d_{n}\right) h_{n}\left(e_{n}\right) \\
& =h_{1}\left(d_{1} e_{1}\right) \cdots h_{n}\left(d_{n} e_{n}\right)=\operatorname{diag}\left(d_{1} e_{1}, \ldots, d_{n} e_{n}\right),
\end{aligned}
$$

where the second equality follows from the second relation in (Tnrels) and the third equality follows from the first relation in Tnrels). Thus the relations in (Tnrels) determine the multiplication of diagonal matrices. So the group T_{n} is determined by the generators $h_{i}(d)$ and the relations in (nrels).

