### 5.3.1 Inverse by determinants

Theorem 5.7. (Inverse by determinants) Let $A \in M_{n}(\mathbb{F})$ such that $\operatorname{det}(A)$ is invertible. Then the inverse of $A$ is the matrix $A^{-1}$ given by

$$
A^{-1}(i, j)=\frac{1}{\operatorname{det}(A)}(-1)^{i+j} \operatorname{det}\left(A^{(j ; i)}\right)
$$

where $A^{(i ; j)}$ is the matrix $A$ with the $i$ th and the $j$ th column removed.

### 5.3.2 Cramer's rule

Let $n \in \mathbb{Z}_{>0}$. Let $A \in M_{n}(\mathbb{F})$ and assume that $A$ is invertible.

$$
\text { Let } x=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right) \quad \text { and } \quad b=\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right) \quad \text { be elements of } \mathbb{F}^{n} \text { with } \quad A x=b
$$

For $i \in\{1, \ldots, n\}$ let

$$
b \xrightarrow{i} A \quad \text { be the matrix } A \text { except with } i \text { th column replaced by } b .
$$

Then

$$
x_{1}=\frac{\operatorname{det}(b \xrightarrow{1} A)}{\operatorname{det}(A)}, \quad x_{2}=\frac{\operatorname{det}(b \xrightarrow{2} A)}{\operatorname{det}(A)}, \quad \ldots, \quad x_{n}=\frac{\operatorname{det}(b \xrightarrow{n} A)}{\operatorname{det}(A)} .
$$

### 5.4 The Cayley-Hamilton theorem

Let $\mathbb{F}[x]$ be the algebra of polynomials in the variable $x$. Let $A \in M_{n}(\mathbb{F})$. Define

$$
\begin{array}{lccc}
\mathrm{ev}_{A}: & \mathbb{F}[x] & \longrightarrow & M_{n}(\mathbb{F}) \\
& c_{0}+c_{1} x+\cdots+c_{r} x^{r} & \longmapsto & c_{0}+c_{1} A+\cdots c_{r} A^{r}
\end{array}
$$

Theorem 5.8. (Cayley-Hamilton) Let $\operatorname{ker}\left(\mathrm{ev}_{A}\right)=\left\{p(x) \in \mathbb{F}[x] \mid \mathrm{ev}_{A}(p(x))=0.\right\}$ Then

$$
\operatorname{det}(A-x) \in \operatorname{ker}\left(\operatorname{ev}_{A}\right) .
$$

