5.3.1 Inverse by determinants

Theorem 5.7. (Inverse by determinants) Let $A \in M_n(\mathbb{F})$ such that det(A) is invertible. Then the inverse of A is the matrix A^{-1} given by

$$A^{-1}(i,j) = \frac{1}{\det(A)} (-1)^{i+j} \det(A^{(j;i)}).$$

where $A^{(i;j)}$ is the matrix A with the *i*th and the *j*th column removed.

5.3.2 Cramer's rule

Let $n \in \mathbb{Z}_{>0}$. Let $A \in M_n(\mathbb{F})$ and assume that A is invertible.

Let
$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
 and $b = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$ be elements of \mathbb{F}^n with $Ax = b$.

For $i \in \{1, \ldots, n\}$ let

 $b \xrightarrow{i} A$ be the matrix A except with *i*th column replaced by *b*.

Then

$$x_1 = \frac{\det(b \xrightarrow{1} A)}{\det(A)}, \quad x_2 = \frac{\det(b \xrightarrow{2} A)}{\det(A)}, \quad \dots, \quad x_n = \frac{\det(b \xrightarrow{n} A)}{\det(A)}$$

5.4 The Cayley-Hamilton theorem

Let $\mathbb{F}[x]$ be the algebra of polynomials in the variable x. Let $A \in M_n(\mathbb{F})$. Define

$$ev_A: \qquad \mathbb{F}[x] \qquad \longrightarrow \qquad M_n(\mathbb{F}) \\ c_0 + c_1 x + \dots + c_r x^r \quad \longmapsto \quad c_0 + c_1 A + \dots + c_r A^r$$

Theorem 5.8. (Cayley-Hamilton) Let $ker(ev_A) = \{p(x) \in \mathbb{F}[x] \mid ev_A(p(x)) = 0.\}$ Then

$$\det(A - x) \in \ker(\mathrm{ev}_A).$$