5 Determinants

5.1 Determinants are homomorphisms

5.1.1 Determinants of permutations

Let

$$
G L_{1}(\mathbb{F})=\mathbb{F}^{\times}=\{c \in \mathbb{F} \mid c \text { is invertible }\}=\{c \in \mathbb{F} \mid c \neq 0\} .
$$

Proposition 5.1. There are exactly two functions $f: S_{n} \rightarrow G L_{1}(\mathbb{F})$ which satisfy

$$
\text { if } w_{1}, w_{2} \in S_{n} \quad \text { then } \quad f\left(w_{1} w_{2}\right)=f\left(w_{1}\right) f\left(w_{2}\right),
$$

the function triv: $S_{n} \rightarrow G L_{1}(\mathbb{F})$ and the function det: $S_{n} \rightarrow G L_{1}(\mathbb{F})$ determined by

$$
\operatorname{triv}\left(s_{i}\right)=1 \quad \text { and } \quad \operatorname{det}\left(s_{i}\right)=-1, \quad \text { for } i \in\{1, \ldots, n\} .
$$

5.1.2 Determinants of square matrices

Theorem 5.2. The functions $f: M_{n}(\mathbb{F}) \rightarrow \mathbb{F}$ which satsify

$$
\text { if } A, B \in M_{n}(\mathbb{F}) \quad \text { then } \quad f(A B)=f(A) f(B) \text {, }
$$

are the functions

$$
\begin{aligned}
\operatorname{det}^{k}: \quad M_{n}(\mathbb{F}) & \longrightarrow \mathbb{F} \\
A & \longmapsto \operatorname{det}(A)^{k} \quad \text { for } k \in \mathbb{Z},
\end{aligned}
$$

where the function det: $M_{n}(\mathbb{F}) \rightarrow \mathbb{F}$ is determined by

$$
\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)
$$

and the conditions

$$
\operatorname{det}\left(x_{i j}(c)\right)=1, \quad \operatorname{det}\left(s_{i}\right)=-1, \quad \text { and } \quad \operatorname{det}\left(h_{i}(d)\right)=d,
$$

for $i, j \in\{1, \ldots, n\}$ with $i<j, c \in \mathbb{F}$ and $d \in \mathbb{F}$.

5.2 Formulas for determinants

5.2.1 Determinants of permutations

Let $n \in \mathbb{Z}_{>0}$. The symmetric group is

$$
S_{n}=\{w:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\} \mid w \text { is a bijection }\} .
$$

Let $w \in S_{n}$. The inversion set of w is

$$
\operatorname{Inv}(w)=\{(i, j) \mid i, j \in\{1, \ldots, n\} \text { and } i<j \text { and } w(i)>w(j)\}
$$

Identify w with the $n \times n$ matrix given by $w(i, j)= \begin{cases}1, & \text { if } j=w(i), \\ 0, & \text { otherwise. }\end{cases}$
Proposition 5.3. Let $w \in S_{n}$. Then

$$
\operatorname{det}(w)=(-1)^{\ell(w)}, \quad \text { where } \quad \ell(w)=\# \operatorname{Inv}(w)
$$

