5.2.2 Determinants of square matrices: the permutation formula

For $A \in M_n(\mathbb{F})$ define

$$D(A) = \sum_{w \in S_n} \det(w) A(1, w(1)) A(2, w(2)) \cdots A(n, w(n)),$$

Proposition 5.4. Let $A \in M_n(\mathbb{F})$ and let $i, j \in \{1, \ldots, n\}$ with i < j.

- (a) If u is a permutation then $D(uA) = \det(u)D(A)$.
- (b) If row i and row j of A are equal then D(A) = 0.
- (c) D(AB) = D(A)D(B).
- (d) $D(s_{ij}) = -1$, $D(x_{ij}(c)) = 1$ and $D(h_i(d)) = c$.

Theorem 5.5. Let $A \in M_n(\mathbb{F})$. Then

$$\det(A) = \sum_{w \in S_n} \det(w) A(1, w(1)) A(2, w(2) \cdots A(n, w(n)))$$

5.3 Laplace expansion

Let $J \subseteq \{1, \ldots, n\}$ with |J| = k. Write

$$J = \{j_1, \dots, j_k\} \qquad \text{where} \qquad \begin{array}{l} j_1 < \dots < j_k \text{ and} \\ \ell_1 < \dots < \ell_{n-k} \end{array}$$

and define a permutation u_J by

$$u_J(r) = \begin{cases} j_r, & \text{if } r \in \{1, \dots, k\}, \\ \ell_{r-k}, & \text{if } s \in \{k+1, \dots, n\}. \end{cases}$$

Theorem 5.6. Let $A \in M_n(\mathbb{F})$.

(a) (General Laplace expansion) Let $K, L \subseteq \{1, \ldots, n\}$ with |K| = |L| = k. Then

$$\sum_{\substack{J \subseteq \mathbb{Z}_{[1,n]} \\ |J| = k}} \det(u_J) \det(A_{K,J}) \det(A^{(L,J)}) = \begin{cases} \det(u_K) \det(A), & \text{if } K = L, \\ 0, & \text{if } K \neq L. \end{cases}$$

where W^J is a set of coset representatives of cosets of S_n/W_J , $A_{K,J}$ is the submatrix of A consisting of entries of A in rows indexed by the elements of K and the entries in columns indexed by J and $A^{(J,L)}$ is the matrix obtained from A by removing the rows indexed by K and removing the columns indexed by elements of L.

(b) (Laplace expansion on the kth row). Let $k, \ell \in \{1, \ldots, n\}$.

$$\sum_{j=1}^{n} (-1)^{k+j} A(k,j) \det(A^{(j;\ell)}) = \begin{cases} \det(A), & \text{if } k = \ell, \\ 0, & \text{if } k \neq \ell. \end{cases}$$