5.2.2 Determinants of square matrices: the permutation formula

For $A \in M_{n}(\mathbb{F})$ define

$$
D(A)=\sum_{w \in S_{n}} \operatorname{det}(w) A(1, w(1)) A(2, w(2)) \cdots A(n, w(n)),
$$

Proposition 5.4. Let $A \in M_{n}(\mathbb{F})$ and let $i, j \in\{1, \ldots, n\}$ with $i<j$.
(a) If u is a permutation then $D(u A)=\operatorname{det}(u) D(A)$.
(b) If row i and row j of A are equal then $D(A)=0$.
(c) $D(A B)=D(A) D(B)$.
(d) $D\left(s_{i j}\right)=-1, D\left(x_{i j}(c)\right)=1$ and $D\left(h_{i}(d)\right)=c$.

Theorem 5.5. Let $A \in M_{n}(\mathbb{F})$. Then

$$
\operatorname{det}(A)=\sum_{w \in S_{n}} \operatorname{det}(w) A(1, w(1)) A(2, w(2) \cdots A(n, w(n))
$$

5.3 Laplace expansion

Let $J \subseteq\{1, \ldots, n\}$ with $|J|=k$. Write

$$
\begin{aligned}
& J=\left\{j_{1}, \ldots, j_{k}\right\} \\
& J^{c}=\left\{\ell_{1}, \ldots, \ell_{n-k}\right\}
\end{aligned} \quad \text { where } \quad \begin{aligned}
& j_{1}<\cdots<j_{k} \text { and } \\
& \ell_{1}<\cdots<\ell_{n-k},
\end{aligned}
$$

and define a permutation u_{J} by

$$
u_{J}(r)= \begin{cases}j_{r}, & \text { if } r \in\{1, \ldots, k\}, \\ \ell_{r-k}, & \text { if } s \in\{k+1, \ldots, n\}\end{cases}
$$

Theorem 5.6. Let $A \in M_{n}(\mathbb{F})$.
(a) (General Laplace expansion) Let $K, L \subseteq\{1, \ldots, n\}$ with $|K|=|L|=k$. Then

$$
\sum_{\substack{J \subseteq \mathbb{Z}_{[1, n]} \\|J|=k}} \operatorname{det}\left(u_{J}\right) \operatorname{det}\left(A_{K, J}\right) \operatorname{det}\left(A^{(L, J)}\right)= \begin{cases}\operatorname{det}\left(u_{K}\right) \operatorname{det}(A), & \text { if } K=L, \\ 0, & \text { if } K \neq L .\end{cases}
$$

where W^{J} is a set of coset representatives of cosets of $S_{n} / W_{J}, A_{K, J}$ is the submatrix of A consisting of entries of A in rows indexed by the elements of K and the entries in columns indexed by J and $A^{(J, L)}$ is the matrix obtained from A by removing the rows indexed by K and removing the columns indexed by elements of L.
(b) (Laplace expansion on the k th row). Let $k, \ell \in\{1, \ldots, n\}$.

$$
\sum_{j=1}^{n}(-1)^{k+j} A(k, j) \operatorname{det}\left(A^{(j ; \ell)}\right)= \begin{cases}\operatorname{det}(A), & \text { if } k=\ell \\ 0, & \text { if } k \neq \ell\end{cases}
$$

