8 Flag varieties

8.0.1 Bruhat decomposition

Theorem 8.1. Let $G=G L_{n}(\mathbb{F})$ and B be the subgroup of upper triangular matrices. Then

$$
G=\bigsqcup_{w \in S_{n}} B w B, \quad \text { with } \quad B w B=\bigsqcup_{c_{1}, \ldots c_{\ell} \in \mathbb{F}} y_{i_{1}}\left(c_{1}\right) \cdots y_{i_{\ell}}\left(c_{\ell}\right) B
$$

if $w=s_{i_{1}} \cdots s_{i_{\ell}}$ with $\ell=\ell(w)$.

8.0.2 The Bruhat decomposition for $n=3$

For $c \in \mathbb{F}_{q}$ define

$$
\begin{gathered}
y_{1}(c)=\left(\begin{array}{lll}
c & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right), \quad y_{2}(c)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & c & 1 \\
0 & 1 & 0
\end{array}\right), \\
s_{1}=y_{1}(0)=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right), \quad s_{2}=y_{2}(0)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), \\
x_{12}(c)=\left(\begin{array}{lll}
1 & c & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right),
\end{gathered}
$$

and for $d \in \mathbb{F}_{q}^{\times}$define

$$
h_{1}(d)=\left(\begin{array}{ccc}
d & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{array}\right), \quad h_{2}(d)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & d & 0 \\
0 & 0 & 1
\end{array}\right), \quad h_{3}(d)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & d
\end{array}\right) .
$$

Then, coset representatives of cosets of B in the double cosets in $B \backslash G / B$

$$
\begin{aligned}
B 1 B & =\{B\} \\
B s_{1} B & =\left\{y_{1}(c) B \mid c \in \mathbb{F}_{q}^{\times}\right\}, \\
B s_{2} B & =\left\{y_{2}(c) B \mid c \in \mathbb{F}_{q}^{\times}\right\}, \\
B s_{1} s_{2} B & =\left\{y_{1}\left(c_{1}\right) y_{2}\left(c_{2}\right) B \mid c_{1}, c_{2} \in \mathbb{F}_{q}^{\times}\right\}, \\
B s_{2} s_{1} B & =\left\{y_{2}\left(c_{1}\right) y_{1}\left(c_{2}\right) B \mid c_{1}, c_{2} \in \mathbb{F}_{q}^{\times}\right\}, \\
B s_{1} s_{2} s_{1} B & =\left\{y_{1}\left(c_{1}\right) y_{2}\left(c_{2}\right) y_{1}\left(c_{1}\right) B \mid c_{1}, c_{2}, c_{3} \in \mathbb{F}_{q}^{\times}\right\},
\end{aligned}
$$

and

$$
\begin{aligned}
B & =\left\{h_{1}\left(d_{1}\right) h_{2}\left(d_{2}\right) h_{3}\left(d_{3}\right) x_{23}\left(c_{3}\right) x_{13}\left(c_{2}\right) x_{12}\left(c_{1}\right) \mid c_{1} c_{2} c_{3} \in \mathbb{F}^{q}, d_{1}, d_{2}, d_{3} \in \mathbb{F}_{q}^{\times}\right\} \\
& =\left\{\left.\left(\begin{array}{ccc}
d_{1} & d_{1} c_{1} & d_{1} c_{2} \\
0 & d_{2} & d_{2} c_{3} \\
0 & 0 & d_{3}
\end{array}\right) \right\rvert\, c_{1}, c_{2}, c_{3} \in \mathbb{F}^{q}, d_{1}, d_{2}, d_{3} \in \mathbb{F}_{q}^{\times}\right\},
\end{aligned}
$$

so that $\operatorname{Card}(B)=(q-1)^{3} q^{3}$ (or, in general, $\left.\operatorname{Card}(B)=(q-1)^{n} q^{\frac{1}{2} n(n-1)}\right)$.

