1.14 Limits

The *tolerance set* is

$$\mathbb{E} = \{10^{-1}, 10^{-2}, \ldots\}.$$

For $n \in \mathbb{Z}_{>0}$ define $d \colon \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}_{\geq 0}$

$$d(x,y) = \sqrt{(y_1 - x_1)^2 + \dots + (y_n - x_n)^2},$$
 if $x = (x_1, \dots, x_n)$ and $y = (y_1, \dots, y_n).$

Let $m, n \in \mathbb{Z}_{>0}$ and let $f \colon \mathbb{R}^m \to \mathbb{R}^n$. Let $a \in \mathbb{R}^m$ and $\ell \in \mathbb{R}^n$.

$$\lim_{x \to a} f(x) = \ell \qquad \text{means}$$

 $\text{if } \varepsilon \in \mathbb{E} \text{ then there exists } \delta \in \mathbb{E} \text{ such that} \quad \text{ if } 0 < d(x,a) < \delta \text{ then } d(f(x),\ell) < \varepsilon.$

Here is a translation into the language of "English":

In English The client has a machine f that produces steel rods of length ℓ for sales.	In Math Let $f: X \to \mathbb{R}$ and let $\ell \in \mathbb{R}$.
The output of f gets closer and closer to ℓ as the input gets closer and closer to a means	$\lim_{x \to a} f(x) = \ell \text{ means}$
if you give me a tolerance the client needs, in other words, the number of decimal places of accuracy the client requires	$\text{if }\varepsilon\in\mathbb{E}$
then my business will tell you	then there exists
the accuracy you need on the dials of the machine so that	$\delta \in \mathbb{E}$ such that
if the dials are set within δ of a	$ \text{if } 0 < d(x,a) < \delta \\$
then the output of the machine will be within ε of ℓ .	then $d(f(x), \ell) < \epsilon$.

Let $n \in \mathbb{Z}_{>0}$ and let a_1, a_2, \ldots be a sequence in \mathbb{R}^n . Let $\ell \in \mathbb{R}$.

$$\lim_{n \to \infty} a_n = \ell \qquad \text{means}$$

if $\varepsilon \in \mathbb{E}$ then there exists $N \in \mathbb{Z}_{>0}$ such that if $n \in \mathbb{Z}_{\geq N}$ then $d(a_n, \ell) < \varepsilon$.