1.24 The fundamental theorem of calculus: interpreting the limit via areas

 If$$
\frac{d f}{d x}=g
$$

then define

$$
\left.\left.\frac{d f}{d x}\right]_{x=a}=g(a) \quad \text { and } \quad\left(\int g d x\right)\right]_{x=a}^{x=b}=f(b)-f(a) .
$$

Fundamental theorem of change.

$$
\left.\frac{d f}{d x}\right]_{x=a}=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} .
$$

Fundamental theorem of calculus.

$$
\left.\left(\int g d x\right)\right]_{x=a}^{x=b}=\lim _{N \rightarrow \infty}\left(g(a) \frac{1}{N}+g\left(a+\frac{1}{N}\right) \frac{1}{N}+\cdots+g\left(b-\frac{1}{N}\right) \frac{1}{N}\right) .
$$

The right hand side

$$
\begin{aligned}
\lim _{N \rightarrow \infty} & \left(g(a) \frac{1}{N}+g\left(a+\frac{1}{N}\right) \frac{1}{N}+\cdots+g\left(b-\frac{1}{N}\right) \frac{1}{N}\right) \\
& =\lim _{N \rightarrow \infty}\left(\text { add up the areas of the little boxes of width } \Delta x=\frac{1}{N} \text { and height } g\left(a+k \frac{1}{N}\right)\right)
\end{aligned}
$$

The leftmost box has area $g(a) \Delta x=g(a) \frac{1}{N}$.
The second box has area $g(a+\Delta x) \Delta x=g\left(a+\frac{1}{N}\right) \frac{1}{N}$.
Continue this process.
So think of $\lim _{N \rightarrow \infty}\left(g(a) \frac{1}{N}+g\left(a+\frac{1}{N}\right) \frac{1}{N}+\cdots+g\left(b-\frac{1}{N}\right) \frac{1}{N}\right)$ as adding up areas from a to b of infinitesimally small boxes with area $g(x) \Delta x$.

