1.19 Derivatives

The addition and multiplication on \mathbb{R} is what makes the set $\mathcal{O}_{\mathbb{R}}=\{f: \mathbb{R} \rightarrow \mathbb{R}\}$ form an \mathbb{R}-algebra with addition, scalar multiplication and multiplication given by

$$
(f+g)(x)=f(x)+g(x), \quad(c f)(x)=c f(x), \quad(f g)(x)=f(x) g(x),
$$

for $f, g \in \mathcal{O}_{\mathbb{R}}$ and $c \in \mathbb{R}$.
A derivative with respect to x on $\mathcal{O}_{\mathbb{R}}$ is the function $\frac{d}{d x}: \mathcal{O}_{\mathbb{R}} \rightarrow \mathcal{O}_{\mathbb{R}}$ such that

$$
\frac{d(f+g)}{d x}=\frac{d f}{d x}+\frac{d g}{d x}, \quad \frac{d(c f)}{d x}=c \frac{d f}{d x}, \quad \frac{d(f g)}{d x}=f \frac{d g}{d x}+\frac{d f}{d x} g \quad \text { and } \quad \frac{d x}{d x}=1,
$$

for $f, g \in \mathcal{O}_{\mathbb{R}}$ and $c \in \mathbb{R}$ and where x denotes the identity function id: $\mathbb{R} \rightarrow \mathbb{R}$.
Theorem 1.16. (Chain rule and power formula)

$$
\frac{d(f \circ g)}{d x}=\frac{d f}{d g} \frac{d g}{d x} \quad \text { and } \quad \frac{d\left(f^{g}\right)}{d x}=f^{g}\left(\frac{g}{f} \frac{d f}{d x}+\log f \frac{d g}{d x}\right) .
$$

Theorem 1.17. If $n \in \mathbb{Z}_{\geq 0}$ then

$$
\frac{d x^{n}}{d x}=n x^{n-1} \quad \text { and } \quad \frac{d e^{x}}{d x}=e^{x} .
$$

Theorem 1.18. If $a \in \mathbb{C}$ then

$$
\frac{d x^{a}}{d x}=a x^{a-1}, \quad \frac{d \log x}{d x}=\frac{1}{x}, \quad \frac{d \sin x}{d x}=\cos x, \quad \frac{d \cos x}{d x}=-\sin x .
$$

1.20 Integrals

The integral is backwards of the derivative,

$$
\text { if } \quad \frac{d g}{d x}=f \quad \text { then } \quad \int f d x=g
$$

so that

$$
\int \frac{d f}{d x} d x=f, \quad \text { up to a constant. }
$$

The product rule gives the formula for integration by parts:

$$
\int u \frac{d v}{d x} d x=u v-\int v \frac{d u}{d x} d x \quad\left(\text { since } \frac{d(u v)}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x}\right) .
$$

The chain rule gives the formula for substitution:

$$
\int u d v=\int u \frac{d v}{d x} d x \quad\left(\text { since } \frac{d u}{d x}=\frac{d u}{d v} \frac{d v}{d x}\right) .
$$

