1.2 The complex numbers \mathbb{C}

The complex numbers is the \mathbb{R}-algebra

$$
\mathbb{C}=\{x+i y \mid x, y \in \mathbb{R}\} \quad \text { with } \quad i^{2}=-1,
$$

so that if $z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2}$ then

$$
\begin{aligned}
z_{1}+z_{2} & =\left(x_{1}+i y_{1}\right)+\left(x_{2}+i y_{2}\right) \\
& =\left(x_{1}+x_{2}\right)+i\left(y_{1}+y_{2}\right)
\end{aligned} \quad \text { and } \quad \begin{aligned}
z_{1} z_{2} & =\left(x_{1}+i y_{1}\right)\left(x_{2}+i y_{2}\right) \\
& =x_{1} x_{2}+i\left(x_{1} y_{2}+x_{2} y_{1}\right)+i^{2} y_{1} y_{2} \\
& =\left(x_{1} x_{2}-y_{1} y_{2}\right)+i\left(x_{1} y_{2}+x_{2} y_{1}\right) .
\end{aligned}
$$

The complex conjugation, or Galois automorphism, is the \mathbb{R}-linear map

$$
-: \mathbb{C} \rightarrow \mathbb{C} \quad \text { given by } \quad \overline{x+i y}=x-i y
$$

The norm, or length function, on \mathbb{C} is the function

$$
\left|\mid: \mathbb{C} \rightarrow \mathbb{R}_{\geq 0} \quad \text { given by } \quad\right| x+i y \mid=\sqrt{x^{2}+y^{2}}
$$

The Hermitian form, or inner product, on \mathbb{C} is

$$
\langle,\rangle: \mathbb{C} \times \mathbb{C} \rightarrow \mathbb{C} \quad \text { given by } \quad\left\langle z_{1}, z_{2}\right\rangle=z_{1} \overline{z_{2}}
$$

The Cartesian form of a complex number $z=x+i y$, the polar form $z=r e^{i \theta}$, the real part $\operatorname{Re}(z)$, the imaginary part $\operatorname{Im}(z)$, the modulus $|z|$, and the argument $\operatorname{Arg}(z)$, are related by

$$
\begin{aligned}
& z=x+i y=\operatorname{Re}(z)+i \operatorname{Im}(z)=r e^{i \theta}=|z| e^{i \operatorname{Arg}(z)}, \quad \text { and } \\
& z=x+i y, \quad \bar{z}=x-i y, \quad x=\frac{1}{2}(z+\bar{z}), \quad y=-i \frac{1}{2}(z-\bar{z})
\end{aligned}
$$

so that

$$
\begin{array}{ll}
\operatorname{Re}(z)=\frac{1}{2}(z+\bar{z})=r \cos \theta, & \operatorname{Im}(z)=\frac{1}{2 i}(z-\bar{z})=r \sin \theta, \\
|z|=\sqrt{x^{2}+y^{2}}, & \operatorname{Arg}(z)=\arctan \left(\frac{y}{x}\right) .
\end{array}
$$

Graphing complex numbers
In particular,

$$
r e^{i \theta}=r \cos \theta+i r \sin \theta .
$$

If $z \in \mathbb{C}$ and $z \neq 0$ then

$$
z^{-1}=\frac{1}{|z|^{2}} \bar{z}
$$

