1.13 Cardinality

Let S and T be sets. The sets S and T are isomorphic, or have the same cardinality

$$
\text { if there is a bijective function } \quad \varphi: S \rightarrow T \text {. }
$$

Write $\operatorname{Card}(S)=\operatorname{Card}(T) \quad$ if S and T have the same cardinality.
Notation: Let S be a set. Write

$$
\operatorname{Card}(S)= \begin{cases}0, & \text { if } S=\emptyset \\ n, & \text { if } \operatorname{Card}(S)=\operatorname{Card}(\{1,2, \ldots, n\}) \\ \infty, & \text { otherwise }\end{cases}
$$

Note that even in the cases where $\operatorname{Card}(S)=\infty$ and $\operatorname{Card}(T)=\infty$ it may be that $\operatorname{Card}(S) \neq \operatorname{Card}(T)$.
Let S be a set.

- The set S is finite if there exists $n \in \mathbb{Z}_{\geq 0}$ such that $\operatorname{Card}(S)=\operatorname{Card}(\{1, \ldots, n\})$.
- The set S is infinite if $\operatorname{Card}(S)$ is not finite.
- The set S is countable if $\operatorname{Card}(S)=\operatorname{Card}\left(\mathbb{Z}_{>0}\right)$.
- The set S is countably infinite if S is countable and infinite.
- The set S is uncountable if S is not countable.

