4 Lecture 4: Level 0 representations

4.1 Extremal weight modules $L(\Lambda)$

Let $\Lambda \in \mathfrak{h}_{\mathrm{int}}^*$. The extremal weight module $L(\Lambda)$ is the U-module

generated by
$$\{u_{w\Lambda} \mid w \in W\}$$
 with relations $K_i(u_{w\Lambda}) = q^{\langle w\Lambda, \alpha_i^{\vee} \rangle} u_{w\Lambda}$,
 $E_i u_{w\Lambda} = 0$, and $F_i^{\langle w\Lambda, \alpha_i^{\vee} \rangle} u_{w\Lambda} = u_{s_i w\Lambda}$, if $\langle w\Lambda, \alpha_i^{\vee} \rangle \in \mathbb{Z}_{\geq 0}$, (4.1)
 $F_i u_{w\Lambda} = 0$, and $E_i^{-\langle w\Lambda, \alpha_i^{\vee} \rangle} u_{w\Lambda} = u_{s_i w\Lambda}$, if $\langle w\Lambda, \alpha_i^{\vee} \rangle \in \mathbb{Z}_{\leq 0}$,

for $i \in \{0, \dots, n\}$. This module has a crystal, denoted $B(\Lambda)$.

4.2 Level 0 extremal weight modules $L(\lambda)$

Let

$$\lambda = m_1 \omega_1 + \dots + m_n \omega_n, \quad \text{with} \quad m_1, \dots, m_n \in \mathbb{Z}_{>0}.$$

Let

$$x_{1,1},\ldots,x_{m_1,1}, \qquad x_{1,2},\ldots,x_{m_2,2}, \qquad \ldots, \qquad x_{1,n},\ldots,x_{m_n,n},$$

be n sets of formal variables and define

$$RG_{\lambda} = \mathbb{C}[x_{1,1}^{\pm 1}, \dots, x_{m_1,1}^{\pm 1}]^{S_{m_1}} \otimes \dots \otimes \mathbb{C}[x_{1,n}^{\pm 1}, \dots, x_{m_n,n}^{\pm 1}]^{S_{m_n}}$$

For $i \in \{1, \ldots, n\}$, define

$$e_{+}^{(i)}(u) = (1 - x_{1,i}u)(1 - x_{2,i}u) \cdots (1 - x_{m_i,i}u)$$
 and
$$e_{-}^{(i)}(u^{-1}) = (1 - x_{1,i}^{-1}u^{-1})(1 - x_{2,i}^{-1}u^{-1}) \cdots (1 - x_{m_i,i}^{-1}u^{-1}).$$

Let U' be the subalgebra of U without the generator D.

Theorem 4.1. The extremal weight module $L(\lambda)$ is the $(\mathbf{U}' \otimes_{\mathbb{Z}} RG_{\lambda})$ -module generated by a single vector m_{λ} with relations

$$\mathbf{q}_{+}^{(i)}(u)m_{\lambda} = K_{i}\frac{e_{+}^{(i)}(q^{-1}u)}{e_{+}^{(i)}(qu)}m_{\lambda} \qquad and \qquad \mathbf{q}_{-}^{(i)}(u^{-1})m_{\lambda} = K_{i}^{-1}\frac{e_{-}^{(i)}(qu^{-1})}{e_{-}^{(i)}(qu^{-1})}m_{\lambda},$$

where $\mathbf{q}_{+}^{(i)}(u)$ and $\mathbf{q}_{-}^{(i)}(u^{-1})$ are generating series for loop generators of \mathbf{U} .

An alternative presentation of $L(\lambda)$ is as the $(\mathbf{U}' \otimes_{\mathbb{Z}} RG_{\lambda})$ -module generated by a single vector m_{λ} with relations

$$\mathbf{x}_{i,r}^+ m_{\lambda} = 0, \qquad K_i m_{\lambda} = q^{m_i} m_{\lambda}, \quad C m_{\lambda} = m_{\lambda},$$

and

$$\mathbf{e}_s^{(i)} m_{\lambda} = 0$$
 and $\mathbf{e}_{-s}^{(i)} m_{\lambda} = 0$, for $i \in \{1, \dots, n\}$ and $s \in \mathbb{Z}_{>m_i}$,

4.3 Finite dimensional standard modules $M^{fin}(a(u))$

A Drinfeld polynomial is an n-tuple of polynomials $a(u) = (a^{(1)}(u), \dots, a^{(n)}(u))$ with $a^{(i)}(u) \in \mathbb{C}[u]$, represented as

$$a(u) = a^{(1)}(u)\omega_1 + \dots + a^{(n)}(u)\omega_n,$$
 with $a^{(i)}(u) = (u - a_{1,i})\cdots(u - a_{m_i,i})$

so that

the coefficient of
$$u^j$$
 in $a^{(i)}(u)$ is $e_{m_i-j}^{(i)}(a_{1,i},\ldots,a_{m_i,i}),$

the $(m_i - j)$ th elementary symmetric function evaluated at the values $a_{1,i}, \ldots, a_{m_i,i}$. Define

$$M^{\text{fin}}(a(u)) = L(\lambda) \otimes_{RG_{\lambda}} m_{a(u)},$$

where

$$e_k^{(i)}(x_{1,i}, x_{2,i}, \dots) m_{a(u)} = e_k^{(i)}(a_{1,i}, \dots, a_{m_i,i}) m_{a(u)}$$

specifies the RG_{λ} -action on $m_{a(u)}$. In other words, the module $M^{\text{fin}}(a(u))$ is $L(\lambda)$ except that variables $x_{j,i}$ have been specialised to the values $a_{j,i}$.

4.4 Finite dimensional simple modules

Let U' be the subalgebra of U without the generator D.

Theorem 4.2. The standard module

$$M^{\text{fin}}(a(u))$$
 has a unique simple quotient $L^{\text{fin}}(a(u))$

and

$$\{ \textit{Drinfeld polynomials} \} \qquad \longrightarrow \quad \{ \textit{finite dimensional simple \mathbf{U}'-modules} \} \\ a(u) = a^{(1)}(u)\omega_1 + \dots + a^{(n)}(u)\omega_n \quad \longmapsto \qquad \qquad L^{\text{fin}}(a(u))$$

is a bijection.

4.5 Crystals for level 0 $L(\lambda)$ and $M^{fin}(a(u))$

Let

$$\lambda = m_1 \omega_1 + \dots + m_n \omega_n, \quad \text{with } m_1, \dots, m_n \in \mathbb{Z}_{\geq 0}.$$

Let $k = \#\{i \in \{1, ..., n\} \mid m_i \neq 0\}$ and

$$S^{\lambda} = \{ \vec{\kappa} = (\kappa^{(1)}, \dots, \kappa^{(n)}) \mid \kappa^{(i)} \text{ is a partition with } \ell(\kappa^{(i)}) < m_i \text{ for } i \in \{1, \dots, n\} \}.$$

Given λ there are uniquely determined

$$w \in W^{\mathrm{ad}}$$
 and $j \in \mathbb{Z}_{\geq 0}$ and $\nu \in A_1$ such that $w(\nu + \Lambda_0) = -j\delta + \lambda + \Lambda_0$.

Then the crystal of $L(\lambda)$ is the set

$$B(\lambda) = B(\nu + \Lambda_0)_w^+ \times \mathbb{Z}^k \times S^{\lambda}.$$

and the crystal of $M^{fin}(a(u))$ is the set

$$B^{\text{fin}}(\lambda) = B(\nu + \Lambda_0)_w^+.$$

4.6 Character formulas

Let

$$0_q = \frac{1}{1-q} + \frac{q^{-1}}{1-q^{-1}} = \dots + q^{-3} + q^{-2} + q^{-1} + 1 + q + q^2 + \dots,$$

(although $\frac{q^{-1}}{1-q^{-1}} = \frac{1}{q-1} = \frac{-1}{1-q}$, it is important to note that 0_q is not equal to 0, it is a doubly infinite formal series in q and q^{-1}).

Conceptually, the set $\mathbb{Z}^k \times S^{\lambda}$ is the crystal of RG_{λ} . Letting $q = e^{-\delta}$, its character is

$$\operatorname{char}(RG_{\lambda}) = \left(0_{q^{m_1}} \prod_{k=1}^{m_1-1} \frac{1}{1-q^k}\right) \left(0_{q^{m_2}} \prod_{k=1}^{m_2-1} \frac{1}{1-q^k}\right) \cdots \left(0_{q^{m_n}} \prod_{k=1}^{m_n-1} \frac{1}{1-q^k}\right).$$

The character of the crystal $B(\nu + \Lambda_0)_w^+$ is determined by the Demazure character formulas. A pleasant way to express this character is as the evaluation of an electronic Macdonald polynomial,

$$\operatorname{char}(B(\nu + \Lambda_0)_w^+) = E_{w_0\lambda}(q, 0).$$

Putting char (RG_{λ}) and char $(B(\nu + \Lambda_0)_w^+)$ together gives

$$\operatorname{char}(B(\lambda)) = \operatorname{char}(B(\nu + \Lambda_0)_w^+) \operatorname{char}(RG_{\lambda}).$$