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16 Vector spaces with topology

16.1 Topological vector spaces

Let C = R+ Ri with i
2 = �1 be the field of complex numbers with complex conjugation

C ! C
c 7! c

given by a+ bi = a� bi,

and absolute value
C ! R�0

c 7! |c|
given by |c|

2 = c c.

Let K be either R or C. A K-vector space is a set V with functions

V ⇥ V ! V

(v1, v2) 7! v1 + v2
and

K⇥ V ! V

(c, v) 7! cv

(addition and scalar multiplication) such that

(a) If v1, v2, v3 2 V then (v1 + v2) + v3 = v1 + (v2 + v3),

(b) There exists 0 2 V such that if v 2 V then 0 + v = v and v + 0 = v,

(c) If v 2 V then there exists �v 2 V such that v + (�v) = 0 and (�v) + v = 0,

(d) If v1, v2 2 V then v1 + v2 = v2 + v1,

(e) If c 2 K and v1, v2 2 V then c(v1 + v2) = cv1 + cv2,

(f) If c1, c2 2 K and v 2 V then (c1 + c2)v = c1v + c2v,

(g) If c1, c2 2 K and v 2 V then c1(c2v) = (c1c2)v,

(h) If v 2 V then 1v = v.

A topological field is a field K with a topology such that

K⇥K ! K
(a, b) 7! a+ b

and
K⇥K ! K
(a, b) 7! ab

are continuous.

Let K be a topological field. A topological K-vector space is a K-vector space V with a topology such
that

V ⇥ V ! V

(v1, v2) 7! v1 + v2
and

K⇥ V ! V

(c, v) 7! cv
are continuous.

16.1.1 Normed vector spaces and Banach spaces

A normed vector space is a K-vector space V with a function k k : V ! R�0 such that

(a) If x, y 2 V then kx+ yk  kxk+ kyk,

(b) If c 2 K and v 2 V then kcvk = |c| kvk,

(c) If v 2 V and kvk = 0 then v = 0.

Let (V, k k) be a normed vector space. The norm metric on V is the function

d : V ⇥ V ! R�0 given by d(x, y) = kx� yk.

A Banach space is a normed vector space V which is complete (as a metric space with the norm
metric).
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16.1.2 Inner product spaces and Hilbert spaces

Let K be either R or C.
A positive definite symmetric inner product space is a K-vector space V with a function

V ⇥ V ! K
(v1, v2) 7! hv1, v2i

such that

(a) (symmetry condition) If v1, v2 2 V then hv1, v2i = hv2, v1i,

(b) (linearity in the first coordinate) If c1, c2 2 K and v1, v2, v3 2 V then hc1v1 + c2v2, v3i =
c1hv1, v3i+ c2hv2, v3i,

(c) (linearity in the second coordinate) If c1, c2 2 K and v1, v2, v3 2 V then hv3, c1v1 + c2v2i =
c1hv3, v1i+ c2hv3, v2i,

(d) (diagonal condition) If v 2 V and hv, vi = 0 then v = 0.

(e) (norm condition) If v 2 V then hv, vi 2 R�0.

A positive definite Hermitian inner product space is a K-vector space V with a function

V ⇥ V ! K
(v1, v2) 7! hv1, v2i

such that

(a) (symmetry condition) If v1, v2 2 V then hv1, v2i = hv2, v1i,

(b) (linearity in the first coordinate) If c1, c2 2 K and v1, v2, v3 2 V then hc1v1 + c2v2, v3i =
c1hv1, v3i+ c2hv2, v3i,

(c) (conjugate linearity in the second coordinate) If c1, c2 2 K and v1, v2, v3 2 V then hv3, c1v1 +
c2v2i = c1hv3, v1i+ c2hv3, v2i,

(d) (diagonal condition) If v 2 V and hv, vi = 0 then v = 0.

(e) (norm condition) If v 2 V then hv, vi 2 R�0.

An inner product space is a positive definite symmetric inner product space or a positive definite
Hermitian inner product space.

Let (V, h, i) be an inner product space. The length norm on V is the function

V ! R�0

v 7! kvk
given by kvk

2 = hv, vi.

A Hilbert space is an inner product space V which is complete (as a metric space with the norm metric
for the length norm).

Theorem 16.1. Let (V, h, i) be an inner product space.

(a) (Pythagorean theorem) If x, y 2 V and hx, yi = 0 then kxk
2 + kyk

2 = kx+ yk
2.

(b) (Parallelogram law) If x, y 2 V kx+ yk
2 + kx� yk

2 = 2kxk2 + 2kyk2.

(c) (Cauchy-Schwarz) If x, y 2 V then |hx, yi|  kxk · kyk.

(d) (triangle inequality) If x, y 2 V then kx+ yk  kxk+ kyk.
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16.2 Bounded linear operators

Let K be either R or C. Let (V, k kV ) and (W, k kW ) be normed K-vector spaces. The space of bounded
linear operators from V to W is

B(V,W ) = {T : V ! W | T is linear and kTk exists in R�0},

where

kTk = sup
n
kTxkW

kxkV

��� x 2 H

o
.

Proposition 16.2. Let K be either R or C. Let (V, k kV ) and (W, k kW ) be normed K-vector spaces.
Let T : V ! W be a linear operator. The following are equivalent.

(a) T is bounded.

(b) T is continuous.

(c) T is uniformly continuous.

16.2.1 Duals and adjoints

Let K be either R or C. Let V be a normed K-vector space. The space of bounded linear functionals
on V , or the dual of V , is

V
⇤ = B(V,K) = {bounded linear operators ' : V ! K}.

Let (V, k kV ) and (W, k kW ) be normed vector spaces. Let T : V ! W be a linear operator. The
adjoint of T is the linear transformation

T
⇤ : W ⇤

! V
⇤ given by (T ⇤

')(v) = '(T (v)).

Proposition 16.3. Let H be a Hilbert space. Then

 : H �! H
⇤

x 7�!  x

where
 x : H ! K

h ! hh, xi

is a skew-linear bijective isometry and k k = 1.

The dual H⇤ does not have a natural inner product so it is not naturally a Hilbert space until it is
identified with H. The proof of Proposition 24.1 uses Theorem 17.2.

16.3 Bases

Let K be R or C. Let V be a K-vector space.

A basis of V is a subset B ✓ V such that

(a) K-span(B) = V ,

(b) B is linearly independent,

where
K-span(B) = {a1b1 + · · ·+ a`b` | ` 2 Z>0, b1, . . . , b` 2 B, a1, . . . , a` 2 K}

and B is linearly independent if B satisfies

if ` 2 Z>0 and b1, . . . , b` 2 B and a1, . . . , a` 2 K, and

a1b1 + · · · a`b` = 0 then a1 = 0, a2 = 0, . . . , a` = 0.

Let V be a topological K-vector space. A topological basis of V is a subset B ✓ V such that
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(a) K-span(B) = V ,

(b) B is linearly independent,

Proposition 16.4. Let K be R of C and let (V, k k) be a normed K-vector space. Then V has a
countable dense set C if and only if V has a sequence B = (b1, b2, . . .) with K-span(B) = V .

Let V be a topological K-vector space. A Schauder basis of V is a sequence (b1, b2, . . .) in V such that

if v 2 V then there exists a unique sequence (a1, a2, . . .) 2 K such that
X

i2Z>0

aibi = v,

where v =
X

i2Z>0

aibi means

v = lim
n!1

sn where s1 = a1b1, s2 = a1b1 + a2b2, s3 = a1b1 + a2b2 + a3b3, . . . .

16.4 Orthogonality

16.4.1 Orthonormal sequences and Gram-Schmidt

Let V be a Hilbert space.

An orthonormal sequence in V is a sequence (a1, a2, . . .) in V such that

if i, j 2 Z>0 then hai, aji =

(
0, if i 6= j,

1, if i = j.

Proposition 16.5. Let V be an inner product space.

(a) An orthonormal sequence (a1, a2, . . .) in V is linearly independent.

(b) (Gram-Schmidt) Let (v1, v2, . . .) be a sequence of linearly independent vectors in V . Let

a1 =
v1

kv1k
, and an+1 =

vn+1 � hvn+1, a1ia1 � · · ·� hvn+1, anian

kvn+1 � hvn+1, a1ia1 � · · ·� hvn+1, aniank
.

Then (a1, a2, . . .) is an orthonormal sequence of linearly independent vectors in V .

Theorem 16.6. Let H be a Hilbert space. If H has a countable dense set then H ⇠= `
2.

16.4.2 Orthogonals and projections in Hilbert spaces

Let V be a inner product space and let S ✓ V . The orthogonal to S is

S
? = {v 2 V | if w 2 S then hv, wi = 0}.

Let x 2 V . The distance from x to S is

d(x, S) = inf{d(x,w) | w 2 W}.

Proposition 16.7. Let H be a Hilbert space and let W be a closed subspace of H.

(a) If x 2 H then there exists a unique y 2 W such that d(x, y) = d(x,W ).
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(b) Define P : H ! H by setting P (x) = y where y is as in (a). Then P is a linear transformation,

P (x) 2 W, (id� P )(x) 2 W
?
, kPk = 1,

P
2 = P, (id� P )2 = (id� P ), and id = P + (id� P ).

Let H be a Hilbert space, let W be a closed subspace. The projection onto W is the bounded linear
transformation PW : H ! H given by

PW (x) = y, where y 2 W is such that d(x, y) = d(x,W ).

Theorem 16.8. Let V be a Hilbert space. Let W be a subset of V .

(a) W
? is a closed subspace of V .

(b) W is a closed subspace of V if and only if V = W �W
?
.

Theorem 16.9. Let H be a Hilbert space. Let (a1, a2, . . .) be an orthonormal sequence in H, let

W = K-span{a1, a2, . . .}, W the closure of W , and P
W
: H ! H

the projection onto W . If x 2 H then

P
W
(x) =

1X

n=1

hx, anian,

16.5 Eigenvectors and eigenspaces

16.5.1 Eigenvalues and compact operators

Let H be a complex vector space and let T : H ! H be a linear operator. Let � 2 C. The �-eigenspace
of T is

X� = {v 2 H | Tv = �v} = ker(T � �) and �p(T ) = {� 2 C | X� 6= 0}.

is the point spectrum of T .
Let X be a normed vector space and let T : X ! X be a bounded linear operator.

• T is compact if T satisfies:

if (x1, x2, . . .) is a sequence in {x 2 H | kxk = 1}
then (Tx1, Tx2, . . .) has a cluster point in X.

Proposition 16.10. Let H be a Hilbert space and let � 2 C.
(a) Let T : H ! H be a linear operator. Then

T has an eigenvector of eigenvalue � if and only if �� T is not injective.

(b) (Fredholm’s theorem) Let T : H ! H be a compact linear operator. Then

�� T is injective if and only if �� T is bijective.
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16.5.2 Existence of eigenvectors

Let H be a Hilbert space and let T : H ! H be a bounded linear operator.

• T is self adjoint if T satsifies: if x, y 2 H then hTx, yi = hx, Tyi.

• T is an isometry if T satisfies: if x, y 2 H then hTx, Tyi = hx, yi.

• T is unitary if T is an isometry and T is invertible.

If T : H ! H is a self adjoint operator and u 2 H then

hTu, ui = hu, Tui = hTu, ui so that hTu, ui 2 R.

The Cauchy-Schwarz inequality gives

|hTu, ui|  kTuk · kuk and ✓ = cos�1

✓
hTu, ui

kTuk · kuk

◆

is the “angle between Tu and u” . If ✓ = 0 or ✓ = ⇡ then there exists � 2 C such that Tu = �u and
u is an eigenvector of T . The angle ✓ will be 0 or ⇡ when khTu, uik acheives the maximum possible
value kTuk · kuk. This intuition is made precise by the following two theorems.

Theorem 16.11. Let H be a Hilbert space and let T : H ! H be a bounded self adjoint linear operator.
Let

� = sup{|hTu, ui| | kuk = 1}.

Then
� = kTk and �� T is not a bijection.

Theorem 16.12. Let H be a Hilbert space and let T : H ! H be a compact self adjoint linear operator.
Let (u1, u2, . . .) be a sequence in {u 2 H | kunk = 1} such that

lim
n!1

|hTun, uni| = kTk and let y be a cluster point of Tu1, Tu2, . . ..

Then

kyk = kTk,
|hTy, yi|

kyk2
= kTk and Ty = kTk y.

Let H be a Hilbert space and let b0 2 H. The Rayleigh quotient is

µk+1 =
hAbk, bki

hbk, bki
=

hbk+1, bki

kbkk
2

, where bk+1 =
Abk

kAbkk
=

A
k+1

b0

kAk+1b0k
. (16.1)

Theorem 16.13. Let H be a Hilbert space, let b0 2 H and let (b1, b2, . . .) and (µ1, µ2, . . .) be defined
by (18.1). Then

lim
k!1

bk+1 = b is an eigenvector of eigenvalue �1 = lim
k!1

µk.
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16.5.3 Eigenspace decomposition and the spectral theorem

Let H be a vector space and let T : H ! H be a linear operator. Let � 2 K. The �-eigenspace of T is

H� = {v 2 H | Tv = �v}. and �p(T ) = {� 2 K | H� 6= 0}

is the point spectrum of T .

Proposition 16.14. Let T : H ! H be a self adjoint operator. For � 2 K let H� be the �-eigenspace
of T .

(a) If H� 6= 0 then � 2 R.

(b) If � 6= � then H� ? H�.

(c) If T is compact and � 6= 0 then H� is finite dimensional.

(c) If is compact and �1,�2, . . . is a sequence of distinct eigenvalues of T then

lim
n!1

�n = 0.

Theorem 16.15. (Hilbert-Schmidt spectral theorem) Let H be a Hilbert space.
Let T : H ! H be a bounded compact self adjoint linear operator.

(a) Then

H = W, where W =
M

�2�p(T )

H�.

(b) If H has a countable dense set then there exists a countable orthonormal basis of eigenvectors of T .

16.6 Notes and references

Proposition 24.1 is often called the “Reisz representation theorem” (see [Bre, Theorem 5.7]), but
should not be confused with another similar theorem which is also often called the Reisz representation
theorem (see [Ru, Theorem 2.14]). An alternative source for the initial results of this chapter, including
the results on orthogonality and the Reisz representation theorem, is [Bre, Ch. 5].

The Hilbert-Schmidt theorem, Theorem 18.6, establishes that compact self adjoint operators are
diagonalizable. Proposition 18.5 provides an outline for the proof. The crucial step that compact self
adjoint operators have an eigenvector with eigenvalue equal to the norm is the content of Theorem
18.3 . An alternative reference for these results and Fredholm’s theorem is [Bre, Ch. 6]. References
for power iteration and the Rayleigh quotient are [Wil] and [TB]
(see also https://en.wikipedia.org/wiki/List of numerical analysis topics#Eigenvalue algorithms).

In functional analysis nonseparable Hilbert spaces (Hilbert spaces which do not have a countable
dense set) are relatively rare (see mathoverflow and other resources for examples).

There are four kinds of conditions:
(a) bilinearity

(b) symmetry conditions: symmetric, skew-symmetric, unitary

(c) isotropy conditions

(d) positive definiteness
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The purpose of a condition like hv, vi 2 R�0 is to make sure that k k : V ! R�0 defined by

kvk
2 = hv, vi has image in R�0 to give us a norm.

Many people (Pete Clark) take norms to have values in R�0 and valuations (logs of norms) to be in
a totally ordered abelian group (Atiyah-Macdonald).

The motivation for the discovery of the Baire category theorem and the corresponding results
about bounded linear operators was from the attempt to try to extend the derivative map from a
subspace where it is defined to the whole HIlbert space. GET A GOOD REFERENCE/SUMMARY.

THERE ARE GOOD FORMULAS FOR THE SECOND LARGEST ETC EIGENVALUES AS
SUP hTu, ui| FOR u RUNNING OVER 2-DIMENSIONAL SUBSPACES.
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