MAST30026 Resources, Arun Ram, September 7, 2022

2.2 Assignment 2
2.2.1 Question 1: Sketch (selected steps skipped to focus on main points)

(a) Since S = {ey, e2,...} is a basis then H = span{ey, ea, ...} (note that here, basis means topological
basis). Thus, by the construction of projection onto W = span{ey, eg, . ..} for an orthonormal sequence
(e1,e2,...), the projection onto W is the map P: H — H given by

o0

P(z) = Z(:c, €n)en

n=1

(in particular, the limit of the partial sums exists in W).

By the orthogonal decomposition theorem, H = W @ W+,

In this case W = H and W+ = H+ = 0 (the last equality follows from the condition: if v € H and
(v,v) =0 then v = 0).

Soxz=P(x)+0c H® H* and

o0
x=P(x)= Z(ax €n)en
n=1
(c) Let x,y € H. By part (a),
0o k
Y= T;@, €n)en = klggo Sk, where s, = T;@, €n)en.

Since (,) is continuous and limg_,«, sj exists in H and R>( is complete (this is a run on sentence and
could be expanded to 2 or 3 separate steps) then limy_,(x, si) exists in R>g and

<$,y> = <.CC, lim Sk> = lim <CC, Sk)
k—ro00 k—o00

k

k
klgn <x 2@, én en> = hm (; x, en)
Z x, en)

(b) Using part (c),

[e.9] o0
||| = (x,2) = Z(ac en) (T, en) Z] x, en)|
n=1

2.2.2 Question 2: computations

(a) The function e,,(t) is an eigenvector of L with eigenvalue m since

d .
— (™) = me™ = me,,(t).

dt
(b) Let m,n € Z and assume m # n. Then

1 2r 1 2m
(enlt)en(®) = 5 [ emiemtan = o [ eitmonia
27T 0 27T 0

1 1 =2r ] 1
I G i(m—n)t - = o _
27r<i(m—n)e )]t:o 27 i(m—n)(l =0

28
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Let m,n € Z and assume m = n. Then

1 2 - 1 2 1 o 1 _ 9
<€n(t), en(t)> = / emtelntdt = / 62(n—n)tdt _ / dt — 7t] t_27r _ l 1
2m 0 2 0 2 0 ot t=0 o

So (eg,e1,e_1,€2,€e_2,...) is an orthonormal sequence in L?([0, 27]).
(c) If n € Zp then

dt

1 2T 1 eintqt=2m 1 2T etnt
(tenlt) = 5= [ ]
0

=— [ te™Mdt=_—t

o € o7 in
L) ! 6””T2”1 Ll Ly L
27 \in omin in lt=0  in  2min\in in/ in’

I 1 t2qt=2r 1
tyeo(t)) = — tdt:——} = —(4r* -0) =,
(£, eo(t)) 271'/0 w2 AT 0=

t=0 2 Jo in

and

then, by Question 1 part (a) (there there is a step skipped to show that span{eg,ei,e_1,...}
L?([0.27]), as with all steps it might not even be true, but if it is),

— 1 1 =<1
t=m+ femt + = e—int ' - 6int _ 6—int )
; m —n ; ZTL( )

(d) Since

1 27 ) 1 mnt - o 1 27 int
2 en(t)) = — [ 2emtdt = — 25 } SN (N YA
2m Jo 2r in li=0 27 J m
1 1 1 1 2 2 1 nt =91 1 27 int
2 n mn min Jo n min  in lt=0 min Jo in
s 1 /27 —1 emtyt=2nr 27 2 1 /1 1 2r 2
:.7—7.(.7—0) 5 . ] :.74‘*—7(.*—.*):.7 5

in  min\in 2 in li=0 in n? wn2\in  in in  n?

and

12 1 3yt=2r 1 4
2 eo(t)) = — tgdt:——] = —(87% - 0) = -7%,
(% eo(t)) 27r/0 73 )0 “arom —0 =37

then, by Question 1 part (a),

4 =2 2N 2r 2N\
2_ 7. 2 “n 4 ) int e 4\ —int
! — 3" +z_:1(in+n2>€ +(—in+n2)€ ’

2.2.3 Question 3: computations

(a) If n € Z~( then

int — ;s _ s i—l s an
en(t) = €™ = cos(nt) + isin(nt) = 7 —n(t) + 7 n(t) d
—int — — isin(n :—1 s —i—l s
e_n(t)=ce = cos(nt) (nt) 7 —n(t) 7 n(t),

and
sp(t) = i(en(t) —e_n(t)) and s_n(t) = ——(en(t) + e—n(t)).
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If m,n € Z~o and m # n then

(50(0) 51) = (22 (enl) — e-n(0), 22 (e1) = (1)) = -0~ D~ 0+0) =0,
and

(5n(1), 5-m()) = <*2/?(en(t) —e_n(1)), *f(em(t) +em(t)) = 211,(0 4+0-0-0)=0.
Then

(50(0). 50(0)) = (L2 (enlt) ~ e-al), 2 0nlt) — ealt))) = (1 -0 -0+ 1) =1,
and Y Y

(sn (1), (1)) = (2 (en(t) — e-n(t)), 52 ent) + e-n(t))) = 5-(1 40 -0~ 1) =0.

If n € Z~q then

(s0(t), sn(t)) = (eo(t),

(50(t), s—n(t)) = (eo(t),
(so0(t),s0(t)) = (eo(t), eo(t)) = 1.
So (80, 81,8-1,82,5_2,...) is an orthonormal sequence in LQ(R[O’QW)).
(b) Let n € Z~. Since L = % then

2
Ls,(t) = %(ﬁsin(nt)) = \@%n cos(nt) = —v2n2sin(nt) = —n2s,(t),

2

Ls_,(t) = @(\/ﬁcos(nt)) = —\@%n sin(nt) = —v2n? cos(nt) = —n%s_,(t),
Lsy(t) = Z;l =0 = 0s9(?).

Thus, if n € Z then the eigenvalue of L acting on s, (t) is —n?.

(c) Since f(t) = 27t — 2 is a concave down parabola which goes through the points (0,0) and (0, 27)

30



MAST30026 Resources, Arun Ram, September 7, 2022

the graph of f(t) looks like
Input interpretation
2
plot 2nxt-t

Plots

graph of f(t) = 27t — t? from Wolfram alpha

This graph was obtained by a screenshot from Wolfram alpha by entering plot 2pi*t-t~2.
From Question 2 parts (d) and (e),

t =1+ Z mt : P —— + i %(eint o e—int)
n=1

and

00
2 . .
znt —znt int —int
gz )+ 3 (e + e

Thus (here there is a step skipped to show that span{sg, s1,5_1,...} = L? (Ro.2x)), as with all steps it
might not even be true, but if it is),

o0

2 2 4 2 znt fmt > 4
2nt —t :(277 —§7r )+E 2 +e E —¢C s(nt).
n n

n=1 n=1

OO\[\J

Evaluating at ¢t = 27 gives
2 , =1 &1
=-n“—4 — so that — = —.
3" nz::l n? 6 nz::l n?

Evaluating at ¢t = 7 gives

TL

—4 Zl n2 so that Zl 2 =13
n= n=

OJ\[\')
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2.2.4 Question 4: computations

(@—p)?
The graph of N, ,(x) = 0\}%6_ 2 is obtained from the graph of w(z) = e 2% by shifting and
scaling (shift = by p, scale the z-axis by o2 and scale the y-axis by o+/27). The resulting graph is a
bell curve symmetric about p with standard deviation o and with area under the curve equal to 1 so
that it is the graph is the graph of a probability distribution.

Since the graph of y = 22 is a parabola (symmetric about 0 and concave up) and the graph
2

of g = e7Y is decreasing to approach the line ¢ = 0 then the graph of w = e~222 is a bell curve

approaching w = 0 as £ — oo and x — —oo and going through the point (0,1).

D vyl
plot ¢ /3

Plots

'l.“~
0.8
0.6
0.4

" . 2 >

graph of w(t) = e~2"" from Wolfram alpha

This graph was obtained by a screenshot from Wolfram alpha by entering plot e™-(1/2)x"2 .

e~ 120%) 0.398942 - 2718287105 (x-m7 )"

Va2r o o

Plots for typical parameters

graph of N, ,(x) from Wolfram alpha

This graph was obtained by a screenshot from Wolfram alpha by entering
plot normal distribution mean mu standard deviation sigma.
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Every data analyst, statistician and probabilist must know these curves because of the central
limit theorem, which says that the sum of a large number of independent variables will behave like a
bell curve (see https://en.wikipedia.org/wiki/Central limit theorem).

Part (c): By definition, the Hermite polynomials Py, Py, Ps, . ... are

12dn
PR ——

Po(z) = (=1)"ex® - (e72%")

Since
;loo@l”) = 757,
x
%(e_%mQ) = —qge 2‘”2,
x
2
%(6_%2) = (—$)26_5x2 e = (2% — e 37
d3
@( “27%) = (—2)(2? — 1)e 2% 4 2ze 2% = (—2® + 3x)e 2%,
d4
ﬁ(e—;xz) — () (—2® + 32) + (=322 + 3))e 3" = (2% — 622 4 3)e 37",
x
then
PO = 1’
P =z,
Py =a® -1,
Py =2® — 3u,

P, =2* — 622 +3.

Define operators D: C[[z]] — C[[z]], X : C[[z]] — C[[z]], S: C[[z]] — C[[z]] and E: C|[[z]] — C][z]] by

pf=% Xp=ur  Sf=ei®s  ad  B=sDS

Then
E" =SD"S™ XD =DX —1, SD =DS — X8, and SX =X§S.
Hence SDS™! = D — X. Then
DE"™ = DSD"S™' = (SD+ XS8)D"S™! = SD" "' §~! + XSp"S~1 = "t  XE™.
Since P, = (—1)"E"-1=—E(-1)""'E"1.1=—-FEP, {(x) then

j—xPn(:z) =(-1)"DE" 1= (-1)"(E""' + XE") - 1= —P11(2) + 2Py (z).

By induction,

XD"=D"X —nD" ! which gives @ XE" =E"X —nE"" !,
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since XE" = XSD"S™! = SXD"S™! = S(D"X — nD" 1S~ = SD"S7IX — nSD1STL =
E"X —nE™ ' Thus

zPy(z) = X(-1)"E™ - 1= (—1)"(E"X —nE" 1)1
=(=1D)"E"Pi(z) + nPy—1(x) = Pyyi1(x) + nPyr_1(z).
So Ppti(z) = 2Py(x) — nPy_1(x).

Since

%Pn(x) = —Ppt1(x) + 2Pp(2) = —Ppt1(z) + (Poga(z) + nPp1(x)) = nPp1(x).
Applying the operator identity DX™ = X"D + nX""! to the polynomial 1 gives

d
— 2" =DX" 1=X"D-14+nX" 1 1=04+nz""! =na'.

dx
J:/ e_%'ﬁdx.

then, putting = rcosf and y = rsin 6 so that r2 = 22 + 32,

) 00 10 12 r=o00 0=2m 1,2
J = e 2" e 2V dody = e 2" rdrdf
—00 r=0 6=0
> —1,2 o 1 —1,2
=27 re 2" dr = 27 ( — §2T)6 2" dr
0 0

o0 s=—00
= —27r/ e’ds = —271'63} =-271(0—-1) =2~7.
0 s=0

(b) The favourite integral is

Thus -
J = / e~ dr = /2r.
—0o0
A good reference is Exercise 51 of Chapter 2 of J. Rice, Mathematical statistics and data analysis,
Duxbury Press 1995. This gives that

(Py, Py) = V2.

Using
n,iz? d" —1g2 o 7y 1.2
Pn(l') = (_1) 2 %(e 2 ) a,nd (f, g>,w — / f(x)g(x)e 2 dx
then
9] 00 dn
(=1)™ (2", Pa(2))w :/ (‘Unﬂ?kpn(ﬂﬁ)@_%m?dx :/ xk%(e_%mg)dx
[o¢] dn
—/ ka(e*%ﬁ)dtx
a1 1,279 o0 dr—1! 1 o
k —35Z k—1 —=T
- da:"_l (6 ’ ):| —oo_/_oo ki dmn—l (6 2 )d.’l}
dn—l 1, 0o . ~
- kdxn—l (6 ; 2)}700_14:(_1) 1<xk 17Pn—1(x)>w
= .’kan_l(aj')ef%xQ] > —0
k
— lim L Pnl—l(‘r) _ lim €T 7’;—;(1') —0-0=0
T—00 e3® T——00 e2®
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Then

I
T
—
&

1 1,277 * d 1.2 1
:Pn 7Pn 7—z:| - - Pn T2 ) —— n
x)n-i-l 16 2 —o0 /OO daz( (w)e™ )n-f—lPde

=0- /00 (nPo_1(z) — :an(x))e_éwZniPnH(a:)dx

. 1

L (Pn-1(z), Poy1(2))w +

n+1 n+1
1

=0+ m(PnH(x) +nPp-1(x), Pot1(2))w

1

=7 (Pry1(z), Pr1(2))w-

(@B (), Prg1 ()

Using the base case (Py(x), Po(x))w = (1,1)y, = V27 from part (b), then the induction step gives

(Py(2), Po(2))w = n!V2m.

2.2.5 Question 5: computations

1 92 1
(a) Let K = (m—;;>4 and y = (%) * &, then
s
1 /mw\1/4 w2 2mw . 1 1 /mw\3i 1.2
— s — e 5.) — — ()1 1y
fir () m(m) ¢ P’”<( R m) Tg(ﬂ@) e (),
and, using that (P, Ps),, = v/2ms! from Question 4 part (?),
1 L2 1 L2 1 2, —1y _1,2
<hr(.%'),h5(l')>:<ﬁ[(€ 2 Pr(y)aﬁKe 2 Ps(y)>: \/@K e 4 Pr(y)ae 4 Ps(y)>
1 & 1.2, .
N WKQ/ "1’ P(y)e” 1" Py(y)da
1 10 h \3 1 /mw\s/ h \3
e [ rn () - () ) e
rls! /—ooe : (@) Fs(9) 2mw Y rist \ h 2mw (B P
1
_ é(%)zv%rs!, if r=s,
0, if r # s,

which gives that (hy, hs) = ps.
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_mw% 1 _mw% 1 ,6_mw% h d
a=(G5) rinzn = (55) i Cimg) = (3r) @+ oo Em ),
1 1 1
fo(meNe, oLy mwye 1 0 mwNe o R d
“ _<2h) (a: mep)— 2h> (x me( Zh)aa})_ 2h> (m mw< Zh)d:z:)’
el B hd hod
N=aa 2 (a: m2w? dz? mwdxw+mwmdx>
_mwi o, W& b d hodN_mw o WA b
2 (x m2w? dz? mw(xdx+1) mwxdx>_ 2h (w m2w? dz2 mw)’
T_W(2_h?d2 hd W CL)
@ =9 \* m2w? dz? mwdmw mwxdm
_mw( o P2 & b d o hodN mwe, oA h
) (:U m2w2d$2+mw(xda:+1) mwxdx>_ 2h (3: mede2+mw>'
S
" =Ty
aa—aa= 2h \mw = mw/
Then

Na' —a'N = alad’ — afala = aT(aTa +1)— a'a’a =a’ and

Na—aN =a'aa — aa’a = a'aa — (aTa 4 1)a = —a.

2 2 2 72
1 mw , o e d h 1 1 S 1 1
Fan +§) hw(%(x_mT cﬂ@_miw)+§> 2" x_%ﬁ_ﬁ +ghw
K2 d2 1 d? 1
1 2.2 1 2.2 212 1 2 2 2
T _%Wiim x—i—%(—zh)wfyn o +Tmp =1

That achieves the bulk of the marks for this assignment, we’ll stop there.
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