CHAPTER S

EXAMPLES OF GROUPS

S.1. Cyclic groups

Definition S.1.1. —
e A cyclic group is a group G that contains an element g € G such that the group
generated by ¢ is G, (g) = G.

The following facts follow from the definition.
(1) If G is cyclic with generator g then all elements of G are of the form

-1,-1_ . —1

k:g-g...g Or gk:g g .g
— —_—
k times k times

with & € Zso.
(2) If G is cyclic with generator g and G is finite and Card(G) = n then

G = {179792a s 7gn—1}‘

(3) If G is cyclic then G is abelian since if i, j € Z then ¢g'¢?’ = "™ = g/¢".
(4) If G is cyclic then all subgroups of G are normal since G is abelian.

HW: Let G be a group of order p, where p is a prime. Show that G is cyclic.

S.1.1. The integers Z. —

Definition S.1.2. —
e The group of integers Z is the set Z ={...,—2,—1,0,1,2,...} with the operation
of addition.
HW: Show that Z is an abelian group.
HW: Show that both the element 1 € Z and the element —1 € Z generate Z.
HW: Show that Z is a cyclic group.

HW: Show that every element of Z is in a conjugacy class by itself.
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S.1.1.1. Subgroups and cosets. —

Theorem S.1.1. —

(a) Let H be a subset of the integers Z. Then H is a subgroup of Z if and only if there
exists m € Zxp such that H = mZ.

(b) Let m,n € Zso. Then mZ C nZ if and only if n divides m.

(c) Let n € Zso. Then the quotient group Z/nZ is a cyclic group with n elements.

HW: Show that every subgroup of Z is normal subgroup of Z.
Example. The subgroup 5Z of the integers Z consists of all multiples of 5.
57 ={...,—10,-5,0,5,10,...}.
The subgroup 15Z is contained in the subgroup 5Z.
5Z ={...,—10,—-5,0,5,10,15,...} 2 15Z=1{...,—30,—15,0,15,30,...}.
The sets
04+5Z=5+5Z=10+5Z={...,—10,-5,0,5,10,...} = 5Z,
14+5Z=—-4+5Z=-9+5Z={...,-9,—4,1,6,11,16,...},
2457 =32+57%=-23+5Z=1{...,—13,—8,—3,2,7,12,17,22,27,32,.. .},
34+5Z=-7T4+5Z=8+5Z={...,—7,—-2,3,8,13,...},
44572 =404+ 52 = —236 +5Z ={...,—6,—1,4,9,14,...}.

are cosets of the subgroup 5Z in the group Z. In fact

Z/5Z = {0 +5Z,1+ 5Z,2 + 5Z,3 + 5Z,4 + 57}
is the set of cosets of 5Z in Z. As a group Z/5Z is a cyclic group with 5 elements.
S.1.1.2. Homomorphisms. —

Proposition S.1.2. — A function f: Z — Z is a group homomorphism if and only if
there exists m € 7Z such that f = y,,, where

Oom: L — 7

7.
n = mn, form €

HW: Show that ker ¢, = Z if m = 0.

HW: Show that ¢,, is injective if m # 0.

HW: Show that ¢,, is bijective if and only if m =1 or m = —1.

HW: Show that ¢; = idy, is the identity mapping.

HW: Show that the automorphism group of Z, Aut(Z) = {1, p_1} ~ Z».
HW: Show that inner automorphisms of Z are Inn(Z) = {¢1}.

S.1.1.3. Presentations. —

Proposition S.1.3. — The group of integers Z is isomorphic to the free group on one
generator.
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S.1.2. The finite cyclic groups p,. —

Definition S.1.3. — Let n € Z>, and let g be a symbol. If a € Z let a mod n denote
the element r € {0,1,...,n — 1} such that a = bn + r with b € Z.

e The cyclic group of order n, or n-clock, is the set

Z,=1{1,9,¢°,...,9" '} with the operation given by glg) = glity) modn

There are other favorite instances of the n-clock.

(1) Let wy, be the group given by p, = {1,£,€2, ..., "1}, where ¢ = e¢’n € C, with the
operation of multiplication of complex numbers. In the complex plane the elements
of p, all lie on the circle S' = {z € C | |z| = 1}.

§ §°
The group us

(2) Let Z/nZ be the group given by Z/nZ = {0,1,2,...,n — 1} with operation given
by ¢ +j = (i + j) mod n. This operation is addition modulo n.

HW: Show that the group homomorphism ¢: Z,, — u, given by ¢(g') = &' is an isomor-
phism.

HW: Show that the group homomorphism ¢: u, — Z/nZ given by p(¢%) = i is an
isomorphism.

S.1.2.1. Subgroups and cosets. —
Theorem S.1.4. — Letn € Z>, and let Z, ={1,g,...,g" "'} be the n-clock.

(a) The subgroups of Z,, are the subgroups generated by the elements g™,

(g™) with m € {0,1,...,n—1}.
(b) Let m € {0,1,...,n— 1} and let d = gcd(m,n). Then
(™) = {g") where d = ged(m,n), and  Card({g%)) = n/d.
(c) Let m,k € {0,1,...,n—1}. Then
(g™ C(g"*) if and only if ged(k,n) divides ged(m,n).
(d) Let d € {0,1,...,n} and suppose that d divides n. Then the quotient group

Z,
(gdy — T
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Example. The subgroup lattice of the group Z, is given by: FIX THIS PICTURE

Orders Inclusions
12 C12 =(9)
6 (9%)=1,9%9%9°%9%9"°

4 (9°)=1,9%9%g°

3 (9*) =1,49%4g°

2 (9°)=149°
/

1 (1)

The set of cosets Z15/(g%) = {H,gH, g?H}, where
H=A{1¢"9¢%9¢"}, gH={g9.9"9".9"} and ¢H={g"¢" ¢"g"}

Proposition S.1.5. — Let C* = C—{0} with the operation of multiplication of complex
numbers and let n be a positive integer. Every homomorphism from Z, to C* is of the
form

o 2, — C*

g ek where fze% and k € {0,1,...,n—1}.

S.1.2.2. Presentation. —

Proposition S.1.6. — The cyclic group Z, has a presentation with generator g and
relation

gt =1.
S.1.2.3. The action of Z,, on an n-necklace. —

Proposition S.1.7. — Let S be a circular necklace with n equally spaced beads
bo, b1, ..., b,_1, numbered counterclockwise around S.
(a) There is an action of the cyclic group Z, on the necklace S such that g acts by rotating
S counterclockwise by an angle of 2w /n.

(b) This action has one orbit, Z,by = {bo,b1,...,b,_1} and the stabilizer of each bead is
the subgroup (1).
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S.2. The dihedral groups D,,, n > 2

Definition S.2.1. —
e The dihedral group is the set D,, = {1,z, 22 ... 2" Yy, 2y, 2%y, ..., 2" 'y} with the
operation given by
(xlyj)($kyl) — x(z—i—k) mod ny(j—i-l) mod 2‘

HW: Show that the cardinality of the dihedral group D,, is 2n.

Proposition S.2.1. — The orders of the elements in the dihedral group D,, are
o(1) =1, o(z*) = ged(k,n), and o(z"y) =2 forke{0,1,...,n—1}.

S.2.1. Conjugacy classes, normal subgroups, and the center. —

Proposition S.2.2. —
(a) The conjugacy classes of the dihedral group Dy are the sets

C, = {1}, C, ={z}, C, = {v}, and Coy = {2y}
(b) If n is even and n # 2, then the conjugacy classes of the dihedral group D,, are the sets
C ={1}, Cynsz = {2™?}, Cor = {2* 7%}, fork e {0,1,...,n/2},

Cy=A{y. 2%y, a'y,....a" 2y}, Cpy ={ay, 2y, 2%, ... 2"y},
(c) If n is odd then the conjugacy classes of the dihedral group D,, are the sets
C, ={1}, Cor = {aF, 27%}  fork €{0,1,...,n/2}, and

Cy = {y, zy, 2%y, 2Py, ..., 2"y}

Proposition S.2.3. — Let (a,b,---) denote the subgroup generated by elements a,b, . ...
(a) The normal subgroups of the dihedral group Do are the subgroups

(z), (y)  and  (zy).

(b) If n is even and n # 2 then the normal subgroups of the dihedral group D,, are the
subgroups

() forke{0,1,....n—1} and (2% y) and (2% zy).
(¢) If n is odd then the normal subgroups of the dihedral group D, are the subgroups
() forke{1,...,n—1}.

Proposition S.2.4. —

(a) The center of the dihedral group Do is the subgroup Z(Dsy) = Ds.

(b) If n is even and n # 2 then the center of the dihedral group D, is the subgroup
Z(D,) = {1,2"/?}.

(¢) If n is odd then the center of the dihedral group D, is the subgroup Z(D,,) = {1}.

Notes of Arun Ram aram@unimelb.edu.au, Version: 4 April 2020
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S.2.2. The action of D, on an n-gon. —

Proposition S.2.5. — Let F' be an n-gon with vertices vy, vy, . .., V,_1 numbered coun-
terclockwise around F. Then there is an action of the group D, on the n-gon F such
that

x acts by rotating the n-gon by an angle of 2w /n;

y acts by reflecting about the line which contains the vertex vy and the center of F.

S.2.3. Generators and relations. —

Theorem S.2.6. — The dihedral group D, has a presentation by generators x,y and
relations

=1, y*=1, and yr=az'y.
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S.3. The symmetric groups 5,

Definition S.3.1. —
o Let Zp ) denote the set {1,2,...,m}. A permutation of m is a bijective map

o: Z[l,m] — Z[l,m]~

e The symmetric group 95, is the set of permutations of m with the operation of
composition of functions.

HW: Show that the cardinality of the symmetric group S, is m! = m(m—1)(m-2) - - - 2-1.

There are several convenient ways of representing a permutation o.

. 1 2 3 ... m
(1) As a two line array o = (0(1) o(2) o(3) ... a(m)) :

(2) As a one line array 0 = (0(1)0(2)...0(m)).

(3) As an m x m matrix which has the (o (i), i)th entry equal to 1 for all ¢ and all other
entries equal to 0.

(4) As a function diagram consisting of two rows, of m dots each, such that the i*" dot
of the upper row is connected by an edge to the o (i)' dot of the lower row.

(5) In cycle notation, as a collection of sequences (i1, s, ...,1) such that o(i;) = i,
o(iz) = i3,..., 0(ig—1) = ix, o(ix) = i;. We often leave out the cycles containing
only one element when we write ¢ in cycle notation.

HW: Show that, in function diagram notation, the product 7o of two permutations 7
and o is given by placing the diagram of o above the diagram of 7 and connecting the
bottom dots of ¢ to the top dots of 7.

HW: Show that, in function diagram notation, the identity permutation is represented
by m vertical lines.

HW: Show that, in function diagram notation, o~*

flipped over.

is represented by the diagram of o

HW: Show that, in matrix notation, the product 7o of two permutations 7 and o is given
by matrix multiplication.

HW: Show that, in matrix notation, the identity permutation is the diagonal matrix with
all 1’s on the diagonal.

HW: Show that, in matrix notation, the matrix of o~! is the transpose of the matrix of
0.

HW: Show that the matrix of a permutation is always an orthogonal matrix.

S.3.1. Sign of a permutation. —

Proposition S.3.1. — For each permutation o € S,,, let det(o) denote the determinant
of the matrix which represents the permutation o. The map

e: Sp — {£1}
o +— det(o)

is a homomorphism from the symmetric group S,, to the group po = {£1}.

Notes of Arun Ram aram@unimelb.edu.au, Version: 7 April 2020
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Definition S.3.2. —
e The sign homomorphism of the symmetric group 5, is the homomorphism
e: Sp — {£1}
o — det(o)
where det(c) denote the determinant of the matrix which represents the permutation o.
e The sign of a permutation o is the determinant (o) of the permutation matrix repre-

senting o.
e A permutation o is even if e(0) = +1 and is odd if (o) = —1.

S.3.2. Conjugacy Classes. —

Definition S.3.3. —
e A partition A = (A, Ao, ..., \x) of m is a weakly decreasing sequence of positive integers
which sum to m, i.e.

k
M= A== N\ >0, and Z)\i:m.
=1

The elements of a partition A = (A1, A, ..., \,) are the parts of the partition \. Some-
times we represent a partition A in the form A = (1™12™2...) if X\ has m; 1’s, my 2’s, and
so on. Write A = m if A is a partition of m.

e The cycles of a permutation ¢ are the ordered sequences (i1, ia, . . ., ix) such that o(i1) =
’ig, U(ig) = ig, . ,O'(Z'kfl) = ik, O'(Zk) = il.

e The cycle type 7(0) of a permutation o € S,, is the partition of m determined by the
sizes of the cycles of o.

Example. A permutation ¢ can have several different representations in cycle notation.
In cycle notation,

(12345)(67)(89)(10),  (51234)(67)(89),  (45123)(67)(89)(10),
(34512)(89)(67), and (34512)(10)(98)(67)

all represent the same permutation in Sig, which, in two line notation, is given by

123456 789 10
23451769810
Example. If ¢ is the permutation in Sy which is given, in cycle notation, by
o = (1362)(587)(49)
and 7 is the permutation in Sy which is given, in 2-line notation, by

123456789
461359 287

then mor ™! is the permutation which is given, in cycle notation, by
mor ' = (4196)(582)(37) = (1964)(258)(37).

Theorem S.3.2. —
(a) The conjugacy classes of S,, are the sets

Cy = { permutations o with cycle type A},

where X is a partition of m.



128 CHAPTER S. EXAMPLES OF GROUPS

(b) If A = (1"™2™2...) then the size of the conjugacy class Cy is
m!
my!1mimyl2memsgl3ms ...

Card(Cy) =

The proof of Theorem S.3.2 will use the following lemma.

Lemma S.3.3. — Suppose 0 € S, has cycle type X = (A1, Aa,...) and let vy be the
permutation in S, which is given, in cycle notation, by
TN = (172a 7A1)(>\1+]—a)\1+27a)\1+)\2>(/\1+>\2+1a)

(a) Then o is conjugate to y.

(b) If T € S,, is conjugate to o then T has cycle type X.

(c) Suppose that A = (1"™2™2...). Then the order of the stabilizer of the permutation vy,
under the action of S,, on itself by conjugation, is

1m1m1!2m2m2! LN

Example. The sequence A = (66433322111) is a partition of 32 and can also be repre-
sented in the form \ = (1322334 5%6%) = (1322334 6?). The conjugacy class
. 32!
C, in Sy has 531 92.91.35 .31 4. 62 0 elements.
S.3.3. Generators and relations. —
Definition S.3.4. —
e The simple transpositions in S, are the elements s; = (7,1 + 1), 1 <i<m — 1.

Proposition S.3.4. —
(a) Sy, is generated by the simple transpositions s;, 1 <i < m — 1.
(b) The simple transpositions s;, 1 <1< m — 1, in S, satisfy the relations

S5iSj = 5554, ijQ{Z—l,Z—l—l},
SiSi+1Si = Si+1SiSit+1, ifie{l,...,m—2},
s? =1, ifie{l,...,m—1}.

Definition S.3.5. —
e A reduced word for o € 5, is an expression

O':S,L'l...SZ'p

of o as a product of simple transpositions such that the number of factors is as small as
possible.

e The length /(o) of ¢ is the number of factors in a reduced word for the permutation o.
e The set of inversions of ¢ is the set

inv(o) = {(i,§) | i,j € {1,...,m}, i < j and o (i) > o(j)}.

HW: Show that the sign £(s;) of a simple transposition s; in the symmetric group S, is
-1.

Proposition S.3.5. — Let o be a permutation. Let {(o) be the length of o and let inv (o)
be the set of inversions of the permutation o. Then
(a) The sign of o is e(o) = (1)),
(b) Card(inv(o)) = £(0)
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(¢) The number of crossings in the function diagram of o is ((o).
Theorem S.3.6. — The symmetric group S,, has a presentation by generators,
51,89, .. .,S8m_1 and relations
SiSj:SjSi, ij¢{2—172+1},
8iSi+18; = Si+15iSi+1, ifie{l,...,m—2},

s?2 =1, ifie{l,...,m—1}.
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S.4. Alternating group

Definition S.4.1. —
e The alternating group A, is the subgroup of even permutations of S,,.

Proposition S.4.1. — The alternating group A, is the kernel of the sign homomor-
phism of the symmetric group;

B e: S, — {£1}

A, = ker(e), where o s det(o).

HW: Show that A, is a normal subgroup of .S,,.
HW: Show that Card(A,) = n!/2.

S.4.1. Conjugacy classes. — Since A,, is a normal subgroup of 5,, A, is a union of
conjugacy classes of S,,. Let Cy be a conjugacy class of S, corresponding to a partition
A= (A1, A, ..., Ag). Then the following Proposition says:
(1) The conjugacy class Cy is contained in A, if an even number of the \; are even
numbers.
(2) If the parts A; of A are all odd and are all distinct then C) is a union of two conjugacy
classes of A, and these two conjugacy classes have the same size.
(3) Otherwise C) is also a conjugacy class of A,,.

Proposition S.4.2. — Suppose that o € A,,. Let C, denote the conjugacy class of o in
Sy and let A, denote the conjugacy class of o in A,.
(a) Then o has an even number of cycles of even length.
(b)
Card(C,)
Card(A4,) =< 2
Card(C,), otherwise.

iof all cycles o are of different odd lengths,

The proof of Proposition (1.4.2) uses the following lemma.

Lemma S.4.3. — Let 0 € A, and let A = (A1, \a, ..., A\x) be the cycle type of o. Let vy
be the permutation given, in cycle notation, by

T\ = (1,2, ,)\1)()\1+1,)\1+2,,)\1+)\2>(>\1+)\2+1,)
Let S, denote the stabilizer of o under the action of S, on itself by conjugation. Then,
(a) Sy C A, if and only if S,, C A,.
(b) S,, C A, if and only if v\ has all odd cycles of different lengths.

S.4.2. A, is simple if n # 4. — A group is simple if it has no nontrivial normal subgroups.
The trivial normal subgroups are the whole group and the subgroup containing only the
identity element.

Theorem S.4.4. —
(a) If n # 4 then A, is simple.
(b) The alternating group A4 has a single nontrivial proper normal subgroup given by

N = {(1234), (2143), (3412), (4321)},

where the permutations are represented in one-line notation.

Notes of Arun Ram aram@unimelb.edu.au, Version: 4 April 2020
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The proof of Theorem (1.4.4) uses the following lemma.

Lemma S.4.5. — Suppose N is a normal subgroup of A,, n > 4, and N contains a
3-cycle. Then N = A,.
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S.5. Exercises for symmetric groups

Exercise 1.14.1. Let o be a permutation in S,,. Show that the order of o is the least
common multiple of the lengths of its cycles.

Exercise 1.14.2. Show that the center Z(Sy) = S; and that if m € Z-5 then the center
Z(Sm) = (1).

Exercise 1.14.3.
(a) Show that the proper normal subgroups of S, are

N={XXXXX}
(1) and the alternating group A,.
(b) Show that if m # 4 then the only proper normal subgroup of S, is the alternating
group A,,.
Exercise 1.14.3. Let {ey,...,&,} be a basis of C™. Let S,, act on the vectors ¢; by
og; = €J(i).

Define the sets of vectors
Ot ={e;—¢;li,je{l,...,m}andi<j} and @ ={gj—e|i,j€{l,...,m}and i< j}

to be the sets of positive roots and negative roots respectively. Show that the length
¢(0) of a permutation o is the same as the number of positive roots that are taken to
negative roots by the action of o.

S.6. Exercises for alternating groups

Exercise 1.14.4. Let o be an element of A,,.
Show that the order of ¢ is the least common multiple of the lengths of the cycles of o.
Exercise 1.14.5. What is the center of A,,7

Exercise 1.14.6. Suppose that o € A,,. How can one tell if ¢ is conjugate to 7, in A,,7

Exercise 1.14.7. Show that the elements v,, ¢ = n, and the elements 31%31_1, where
1 F nis a partition with all parts odd and distinct, are a set of representatives of the
conjugacy classes of A,,.
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S.7. Proofs for cyclic groups

Theorem S.7.1. —

(a) Let H be a subset of the integers Z. Then H is a subgroup of Z if and only if there
exists m € Zso such that H = mZ.

(b) Let m and n be positive integers. Then mZ C nZ if and only if n divides m.

(c) Let n be a positive integer. Then the quotient group Z/nZ ~ Z,.

Proof. —
To show: (a) If H is a subgroup of Z then there exists m € Z-( such that H = mZ.
(b) If m is a positive integer then mZ is a subgroup of Z. O

Theorem S.7.2. — Let Z, be the cyclic group of order n generated by g.
(a) The subgroups of the cyclic group Z, are (g™), 0 < m < n— 1.
(b) Letm € {0,1,...,n—1} and let d = ged(m,n). Then (g™) = (g?) where d = ged(m,n)
and Card((g?)) = n/d.
(c) Letm,k € {0,1,...,n—1}. Then (g™) C (g*) if and only if gcd(k,n) divides gcd(m,n).
(d) Letd € {0,1,...,n} and suppose that d divides n. Then the quotient group

Zn/<gd> = Zn/d'

Proposition S.7.8. — Let C* = C—{0} with the operation of multiplication. If ¢: 7 —
C* is a group homomorphism then there exists k € {0,1,...,n — 1} such that ¢ = ¢
where

or: Ln — C* _emi
g s £k where E=en.
Proposition S.7.4. — Let S be a circular necklace with n equally spaced beads
bo, b1, ..., by_1, numbered counterclockwise around S.

(a) There is an action of the cyclic group Z, on the necklace S such that
g acts by rotating S counterclockwise by an angle of 27 /n.

(b) This action has one orbit, Z,by = {bo, b1, ...,b,—1} and the stabilizer of each bead is
the subgroup (1).

Notes of Arun Ram aram@unimelb.edu.au, Version: 4 April 2020
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Proposition S.7.5. — If p: Z — Z is a group homomorphism then there exists m € 7Z
such that p = @, where
Om: L — 7L
n = mn

S.8. Proofs for the dihedral groups D,

Proposition S.8.1. —
(a) The conjugacy classes of Dy are

C = {1}7 C. = {I}vcy - {y}v ny = {{L‘y}
(b) If n is even and n # 2, then the conjugacy classes of D,, are the sets

C, = {1}, Cynso = {2"/?}, Cor = {2", 7%}, for ke {0,1,...,n/2},

¢, ={y, iy, ty, . 2"y, Coy = {2y, oy, Py, "y
(¢) If n is odd then the conjugacy classes of D,, are the sets

C, ={1} C, = {y,zy, 2%y, 2%y, ...,2" 'y} and Cp = {a" 27%} forke{0,1,...,n/2}.

Proof. — (Sketch of Proof.)
(a) The group Dy is abelian, so each element is in a conjugacy class by itself.
(b) and (c): By the multiplication rule,

z(a®)z~t = 2k,

y(a¥)y = a7k

Thus, (1) if 2 is in a conjugacy class then 27" is also in the conjugacy class, and

(2) if 2%y is in a conjugacy class then 2**2y and 2~y are also in the conjugacy class.
One checks case by case that the sets given in the statement of the proposition satisfy
these two properties.

Since these sets partition the group D,,, they must be the conjugacy classes. O

p(aty)e™t = 2y,
_ and _
yr=ah y(aty) = yz*t = a7ty.

Proposition S.8.2. —
(a) D, is generated by the elements x and y.
(b) The elements x and y in D,, satisfy the relations

" =1, y' =1, yr = y.

Proof. — Both parts follow directly from the definition of the dihedral group D,,. THIS
IS A VERY BAD PROOF. ]

Theorem S.8.3. — The dihedral group D, has a presentation by generators x and y
and relations
" =1, Y =1, yr =z y.

Proposition S.8.4. — Let (a,b,---) denote the subgroup generated by elements a,b, . . ..
(a) The normal subgroups of the dihedral group Do are the subgroups

(z), (), (zy),

(b) If n is even and n # 2 then the normal subgroups of the dihedral group D, are the
subgroups

() for ke {0,1,...,n—1} and  {(2%)y), (x?, zy).
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(¢) If n is odd then the normal subgroups of the dihedral group D, are the subgroups
() forke{l,...,n—1}.

Proof. — The subgroups given in the statement of the proposition are unions of conjugacy
classes of D,, as follows.

<:B2, y)=CyU <$2>
(2%, 2y) = Cay U (27)
Thus these subgroups are normal.

It remains to show that these are all the normal subgroups. O]

Proposition S.8.5. — The orders of the elements in the dihedral group D,, are
o(1) =1, o(z") = ged(k,n), o(z*y) = 2, O0<k<n-—1

Proof. — This follows from the definition of the multiplication in D,,. THIS IS A BAD
PROOF O

Proposition S.8.6. — Let ' be an n-gon with vertices v; numbered 0 to n — 1 counter-
clockwise around F'. There is an action of the group D, on the n-gon F such that

x acts by rotating the n-gon by an angle of 2w /n.
y acts by reflecting about the line which contains the vertex vy and the center of F.

Proof. — O]

S.9. Proofs for the symmetric group

Proposition S.9.1. — For each permutation o € Sy,, let det(o) denote the determinant
of the matrix which represents the permutation o. The map
e S, — =*1
o — det(o)

is a homomorphism from the symmetric group Sy, to the group Zq = {£1}.

Proof. —
To show: (a) If o and 7 are permutation matrices then det(o7) = det(o) det(7).
(b) If o is a permutation matrix then det(c) = £1.

(a) This follows from Proposition (777777).
(b) Any permutation matrix is an orthogonal matrix, i.e. oo’ = 1.
Thus, 1 = det(oo!) = det(o) det(c!) = det(o)?.
Thus det(o) = 1. O

Lemma S.9.2. — Suppose o € S, has cycle type A = (A1, A, ...) and let vy be the
permutation in S, which is given, in cycle notation, by

7)\:(172a"' >A1)(>\1+]—a)\1+27a)\1+)\2>(/\1+>\2+1a)

(a) Then o is conjugate to y.
(b) If T € S,, is conjugate to o then T has cycle type X.
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(c) Suppose that A = (1"™2™2...). Then the order of the stabilizer of the permutation =,
under the action of S,, on itself by conjugation, is

1m1m1!2m2m2! et

Proof. —
(a) To show: o is conjugate to v = (1,2, ;A ) A+ L, A\ + 2,00 + )M + Ao +
1)
Suppose that, in cycle notation, o = (41,49, ..., 05, ) (Ix, 41, -« s Ir42s) * " -
Let 7 be the permutation given by 7(i;) = j.
Then mor™! = 7.
(b) Suppose that 7 € S, is conjugate to o.

Then 7 = mor~! for some 7 € S,,.

To show: The lengths of the cycles in mor~!

are the same as the lengths of the

cycles in o.

Suppose that, in cycle notation, o = (i1, 49, ..., 0x, ) (Ix, 41, -« -5 Ir42s) *** -

Then morn (7 (i) = 7(o(i;)) = 7(ij41).

Thus, in cycle notation, rom =t = (7(iy), w(4a), -+, (ix, ) (T(in,11)s - -, T(ingn)) -

So, the lengths of the cycles in mom™!

g.

are the same as the lengths of the cycles in

So, 7 has cycle type A.

(c) Suppose that m € S,, is in the stabilizer of v,.

Then my\m~t = .

In cycle notation, Tyt~ = (7(1),7(2), ..., 7(A)) (T A1+ 1), ..., m1(A1 + X)) -+ - .

Since Ty ! = 7, it follows that each of the sequences (7(\;+1),...,7(\;+A;j41)) must
be a

cyclic rearrangement of some cycle of v,.
This means that m must be a permutation that

(1) permutes cycles of vy of the same length and/or
(2) cyclically rearranges the elements of the cycles of v,.
Note that,
(1) Each cycle of length k in v, can be cyclically rearranged in k ways. Thus, there are
a total of k™ ways of cyclically rearranging the elements of the my, cycles of length
k in yy.
(2) The my, cycles of length k in «, can be permuted in my! different ways.
Thus, there are a total of 1™m,12™2my! - .- permutations 7 which stabilize ~, under the
action of conjugation. O]

Proposition S.9.3. —
(a) The conjugacy classes of S, are the sets

Cy = { permutations o with cycle type A},

where X is a partition of m.

(b) If A = (1"™2™2 ... then the size of the conjugacy class Cy is
m!

my!1mmy2memsgl3ms ...

ICA| =

Proof. —
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(a) To show: (aa) If A m then C, is a conjugacy class of S,,.
(ab) Every conjugacy class is equal to C, for some A - m.
(aa) Let A be a partition of m.
Let O,, denote the conjugacy class of 7,.
To show: Oy = C,.
To show: (aaa) Cy C O,,.
(aab) C,, CC,.
(aaa) Suppose that o € C,.
Then o has cycle type .

So, 0 € O,,.
Thus, Cy C O,,.
(aab) Suppose that o € O,,.

Then, o is conjugate to 7.
Thus, by Lemma (7777), o has cycle type A.
So, o € C,.
So O%\ g C)\.

So Cy = O,,.

So C, is a conjugacy class of S,,.

(ab) Let o € S,, and let O, be the conjugacy class of o.
Suppose that ¢ has cycle type A.

So, by part (a), O, = O,, =C,.
So every conjugacy class is equal to Cy for some A - m. So the sets Cx, A = m, are
the conjugacy classes of S,,.
(b) Let A = (1™2™2...) be a partition of m.
By, Lemma (777), the stabilizer of the permutation 7, has order 1™1m;12™2my! - - ..
Thus, by Proposition (?7?), the order of the conjugacy class C, is

Card(S,, m)!
Card(Cy) = (i) = .
1m1m1!2m2m2! s 1m1m1!2m2m2! s
O
Proposition S.9.4. —
(a) Sy, is generated by the simple transpositions s;, 1 <i < m — 1.
(b) The simple transpositions {s; | i € {1,...,m —1}} in S, satisfy the relations
S;85 = 5;jSi, ij g {ilai + 1}7
8iSi+18; = Si+15iSi+1, ifie{l,...,m—2},
s?=1, forie{l,...,m—1}.
Proof. —  (a) To show: Every permutation o can be written as a product of simple
tranpositions.
This is most easily seen by “stretching out” the function diagram of o.

PICTUREFEstretchout.ps

We must give some argument to show that this can always be done, for an arbitrary
permutation o.

PICTURFEsigma.ps
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The set of inversions of o is the set
inv(o) ={(i,7) | 1,7 €{1,...,m} and ¢ < j and o (i) > o(j)}.

Let k; be the number of inversions of ¢ that have first coordinate .
Then define

(i) SiSiql -+ - Sithi—1, if ky =1,

1) =
7 1, if ki = 0.
Then o = y(m — 1)y(m —2)---y(1).

PICTURFEgammadec.ps

Thus o can be written as a product of simple transpositions.
b) To show: (ba) If i,7 € {1,...,m—1} and j t— 1,7+ 1} then s;s; = s,
J J
(bb) Ifi e {1, N 2} then §;8i+1S8; = Si+15iSi+1-
(be) If i € {1,...,m — 1} then s? = 1, 1<i<m-—1.

(ba)
PICTURFEsisjsjst
(bb)
PICTURFEsisipl
(be)
PICTURFEsi2

S.10. Proofs for the alternating group

Proposition S.10.1. — Suppose that 0 € A,,. Let C, denote the conjugacy class of o
in Sy, and let A, denote the conjugacy class of o in A,,.
(a) Then o has an even number of cycles of even length.

(b)
Card(C,)

Card(A,) =
Card(C,), otherwise.

, if all cycles o are of different odd lengths,

Proof. —

(a) Suppose that o has cycle type A = (A, Ay, ..., Ag).
To show: An even number of the \;, 1 < j < k, are even.
Let 7, be the permutation given, in cycle notation, by

=(152, A M+ LA +H2, )M F e+ )

Since A,, is a normal subgroup of S,, and o € A,, it follows that C, = C,, C A,,.
So vy € A,
So the length ¢(7,) of 7, is even.
So () = S8 (A — 1) is even.
So there are an even number of 1 < j < k such that \; — 1 is odd.
So there are an even number of 1 < j < k such that A; is even.

So o has an even number of cycles of even length.

(b) Let S, be the stabilizer of o under the action of \S,, on itself by conjugation.
Let A, be the stabilizer of ¢ under the action of A,, on itself by conjugation.
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Then, by Proposition (777),
sCard(S,)Card(C,) = Ca%(Sm) = Card(A4,,) = Card(A,)Card(A,).
So,
Card(C,), if Card(A,) # Card(S,),
Card(A,) = {Ca%(") if Card(A,) = Card(S,).
Since A, C S,

Card(C,), if S, C A,
Card(A,) = C,) .
Card(T, if S, € A,.

So,

Card(C,), if S, C A,
Card(A,) =
ard(Ay) Card(C,) S, 7 A,

Then, by Lemma (777),

Card(C,), if S, C A,
Card(A,) = § Card(C, .
#77 if S’YA Z Am
By Lemma (777),
Ca%(a,)’ if all cycles o are of different odd lengths,
Card(A,) =

Card(C,), otherwise.
[l

Lemma S.10.2. — Let 0 € A, and let X\ = (A1, Ao, ..., \;) be the cycle type of o. Let
Y be the permutation given, in cycle notation, by

= (L2, AN+ LA +2, 0 M+ A) A A+ L)

Let S, denote the stabilizer of o under the action of S,, on itself by conjugation. Then,
(a) Sy C A, if and only if S,, C A,,.
(b) S,, € A, if and only if yx has all odd cycles of different lengths.

Proof. —
(a) To show: S, C A,, if and only if S,, C A,,.
To show: (aa) If S, C A,, then S,, C A,,.
(ab) If S,, C A, then S, C A,,.
Then, by Proposition (?7?77), there exists m € S, such that ror™! = ~,.
Thus, S,, = 7S,m .
(aa) Assume S, C A,,.
Let 7 € S,,.
Then 7177 € S,.
So 7 trm € A,,.
So 1 =¢e(rtrn).
Since ¢ is a homomorphism, ¢(7) = e(7) 'e(r)e(n) = e(rl7r7) = 1.
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SoT € A,.
So S, € Ap.

(ab) Assume S,, C A,,.

Let 7 € S,.

Then mrn~t € S,,.

So € A,,.

So 1 =c¢e(rrn 1.

Since € is a homomorphism, £(7) = e(7)e(7)e(mw) ™
SoT € A,

l=g(rrr ) =1

So S, C A,,.
So S, C A, if and only if S, C A,,.
(b) To show: S,, C A,, if and only if v, has all odd cycles of different lengths.
To show: (ba) If S,, C A,, then v, has all odd cycles of different lengths. item]|

(ba)

(bb)

(bb) If v, has all odd cycles of different lengths then S, C A,,.
Proof by contradiction.
Assume A does not have all odd parts of different lengths.
To show: S, € A,,.
Case 1: Assume 7, has an even cycle, say (k+ 1,...,k+ 2n).
Let m be the permutation which cyclically permutes this cycle, 7 = (k +
1,...,k+2n).
Then m € S,,.
But g(7) = (—1)*! = —1.
Som & An.
So S, € Ap,.
Case 2: Assume 7, has two cycles of the same odd length, say (k+1,...,k+n)
and (k+n+1,....k+n+n).
Let 7 be the permutation which switches these two cycles, 7 = (k+1,k+ 1+
n)(k+2,k+24n)---(k+nk+n+n).

Then m € S,,.

But ¢(7) = (—1)"" = —1, since n is odd.
Som ¢ A,

So Sy, € An.

Assume 7, has all different odd cycles.

Suppose that 7 € 9,,.
This means that 7 must be a permutation that
(1) permutes cycles of 7, of the same length and/or
(2) cyclically rearranges the elements of the cycles of ~,.
Since all cycles of 7, are different lengths, 7 cyclically permutes the elements
of the cycles of ~,.
Define permutations

01:(1,2,...,/\1), CQZ(/\1+1,)\1+2,...,)\1+)\2), etc.
Then 7 = ¢} cy? - - - ¢;* for some positive integers ny, no, . .., ng.
Then e(c;) = (—1)%~! =1, since ); is odd.

So <(tau) = e(er)e(es)™ -+ elep)™ = 1.
SoT €A,

So S, € Ap.
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Theorem S.10.3. —
(a) If m # 4 then A, is simple.
(b) The alternating group Ay has a single nontrivial proper normal subgroup given by

{(1234), (2143), (3412), (4321)}

Proof. —

(a)

(b)
{1},

Case a: n=1,2,3.

The groups A; = {1}, Ay = {1} A3 = {(123),(213),(312)} have no nontrivial
proper subgroups.

So Ai, Ay and Az have no nontrivial proper normal subgroups.

Case b: n = 4.

The conjugacy classes of A, are

[(123), (134), (243), (142)},  {(132)(124), (234), (143)},  {(12)(34), (13)(24), (14)(23)}.

Let N be a normal subgroup of Aj.

(ba) Case ba: ™= (123) € N.
Then 7! = (132) and (123)(124) = (12)(34) are in N.
So N contains all the conjugacy classes.
So N = A,.

(bb) Case bb: m= (132) € N.
Then 7= = (123) and (123)(124) = (12)(34) are in N.
So N contains all the conjugacy classes.
So N = A,.
Thus, the only possible union of conjugacy classes which could be a normal
subgroup is

N = {1, (12)(34), (13)(24), (14)(23)}.

It is easy to check that this is a subgroup of Aj.
Case ¢: n > 5.
Let N be a normal subgroup of A,, such that N # (1).
To show: N = A,,.
Let 0 € N and suppose that sigma has cycle type .
Let vy
SOMEHTING

(ca) Case ca: o has a cycle (i1ig - - - i,) of length r > 3.
Then o' € N and (i2i3i4)0(i4’i3i2) € N.
So 0_1((2‘22.3i4)0(i47;32.2)) = (O_l(iligig)g)(i4i3i2) = (212223)(242322) = (Z122Z4) €
N.
Thus, by Lemma (777), N = A,,.
(cb) Case cb: o does not have all odd cycles of different lengths and ¢ has a cycle
of length > 2.
Then, by Propositions (?7?7) and (77?7), A, = C, = C,,.
Since N is normal, C,, = A, C N.
So vy € N and s1y,s81 € N.
Since N is a subgroup ;' € N.
So 73t (s17a81) = (73 's170)81 = s2s1 = (123) € N,
Thus, by Lemma (), N = A,,.
(cc) Case cc: o has all cycles of length 2 or 1.
Since o € A, o has at least two cycles of length 2.



142 CHAPTER S. EXAMPLES OF GROUPS

Thus, by Proposition (), A, =C, =C,
Since N is normal, C,, = A, C N.
So v, € N and soy,82 € N.
Since N is a subgroup 7;1 € N.
So 73 'savase = (14)(23) € N.
So m = (12)(34)(5) and my = (12)(3)(45) € N.
So 1Ty = (345) € N.
Thus, by Lemma (), N = A,,.

\*

]

Lemma S.10.4. — Suppose N is a normal subgroup of A,, n > 4, and N contains a
3-cycle. Then N = A,.

Proof. — To show: A, C N.

Let m = (i1, 142,13) be a 3-cycle in N.

Since n > 4, m has more than one l-cycle and it follows from Proposition (), that
A, =C,.

Thus, since N is normal, C;, C N.

So (123) and (143) are elements of V.

Then o = (143)(123) = (12)(34) = sys3 € N.

Since o has an even cycle, it follows from Proposition (), that A4, =C, C N.

Then

Cp, ifj=idtl1,
$i85 € .
C,, otherwise.

So s;s; € N for all 4, 7.

By, Proposition () and Proposition (), the elements s;s; generate A,,.
So A,, C N. O



