
CHAPTER S

EXAMPLES OF GROUPS

S.1. Cyclic groups

Definition S.1.1. —
• A cyclic group is a group G that contains an element g 2 G such that the group
generated by g is G, hgi = G.

The following facts follow from the definition.

(1) If G is cyclic with generator g then all elements of G are of the form

gk = g · g · · · g| {z }
k times

or g�k = g�1g�1 · · · g�1

| {z }
k times

with k 2 Z>0.
(2) If G is cyclic with generator g and G is finite and Card(G) = n then

G = {1, g, g2, . . . , gn�1}.

(3) If G is cyclic then G is abelian since if i, j 2 Z then gigj = gi+j = gjgi.
(4) If G is cyclic then all subgroups of G are normal since G is abelian.

HW: Let G be a group of order p, where p is a prime. Show that G is cyclic.

S.1.1. The integers Z. —

Definition S.1.2. —
• The group of integers Z is the set Z = {. . . ,�2,�1, 0, 1, 2, . . .} with the operation
of addition.

HW: Show that Z is an abelian group.

HW: Show that both the element 1 2 Z and the element �1 2 Z generate Z.

HW: Show that Z is a cyclic group.

HW: Show that every element of Z is in a conjugacy class by itself.
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S.1.1.1. Subgroups and cosets. —

Theorem S.1.1. —

(a) Let H be a subset of the integers Z. Then H is a subgroup of Z if and only if there
exists m 2 Z>0 such that H = mZ.

(b) Let m,n 2 Z>0. Then mZ ✓ nZ if and only if n divides m.
(c) Let n 2 Z>0. Then the quotient group Z/nZ is a cyclic group with n elements.

HW: Show that every subgroup of Z is normal subgroup of Z.

Example. The subgroup 5Z of the integers Z consists of all multiples of 5.

5Z = {. . . ,�10,�5, 0, 5, 10, . . .}.

The subgroup 15Z is contained in the subgroup 5Z.

5Z = {. . . ,�10,�5, 0, 5, 10, 15, . . .} ◆ 15Z = {. . . ,�30,�15, 0, 15, 30, . . .}.

The sets

0 + 5Z = 5 + 5Z = 10 + 5Z = {. . . ,�10,�5, 0, 5, 10, . . .} = 5Z,

1 + 5Z = �4 + 5Z = �9 + 5Z = {. . . ,�9,�4, 1, 6, 11, 16, . . .},
2 + 5Z = 32 + 5Z = �23 + 5Z = {. . . ,�13,�8,�3, 2, 7, 12, 17, 22, 27, 32, . . .},
3 + 5Z = �7 + 5Z = 8 + 5Z = {. . . ,�7,�2, 3, 8, 13, . . .},
4 + 5Z = 404 + 5Z = �236 + 5Z = {. . . ,�6,�1, 4, 9, 14, . . .}.

are cosets of the subgroup 5Z in the group Z. In fact

Z/5Z = {0 + 5Z, 1 + 5Z, 2 + 5Z, 3 + 5Z, 4 + 5Z}

is the set of cosets of 5Z in Z. As a group Z/5Z is a cyclic group with 5 elements.

S.1.1.2. Homomorphisms. —

Proposition S.1.2. — A function f : Z ! Z is a group homomorphism if and only if
there exists m 2 Z such that f = 'm, where

'm : Z ! Z

n 7! mn,
for m 2 Z.

HW: Show that ker'm = Z if m = 0.

HW: Show that 'm is injective if m 6= 0.

HW: Show that 'm is bijective if and only if m = 1 or m = �1.

HW: Show that '1 = idZ, is the identity mapping.

HW: Show that the automorphism group of Z, Aut(Z) = {'1,'�1} ' Z2.

HW: Show that inner automorphisms of Z are Inn(Z) = {'1}.
S.1.1.3. Presentations. —

Proposition S.1.3. — The group of integers Z is isomorphic to the free group on one
generator.
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S.1.2. The finite cyclic groups µn. —

Definition S.1.3. — Let n 2 Z>1 and let g be a symbol. If a 2 Z let a mod n denote
the element r 2 {0, 1, . . . , n� 1} such that a = bn+ r with b 2 Z.

• The cyclic group of order n, or n-clock, is the set

Zn = {1, g, g2, . . . , gn�1} with the operation given by gigj = g(i+j) mod n.

There are other favorite instances of the n-clock.

(1) Let µn be the group given by µn = {1, ⇠, ⇠2, . . . , ⇠n�1}, where ⇠ = e
2⇡i

n 2 C, with the
operation of multiplication of complex numbers. In the complex plane the elements
of µn all lie on the circle S1 = {z 2 C | |z| = 1}.

The group µ5

(2) Let Z/nZ be the group given by Z/nZ = {0̄, 1̄, 2̄, . . . , n� 1} with operation given
by ī+ j̄ = (i+ j) mod n. This operation is addition modulo n.

HW: Show that the group homomorphism � : Zn ! µn given by �(gi) = ⇠i is an isomor-
phism.

HW: Show that the group homomorphism ' : µn ! Z/nZ given by '(⇠i) = ī is an
isomorphism.

S.1.2.1. Subgroups and cosets. —

Theorem S.1.4. — Let n 2 Z>1 and let Zn = {1, g, . . . , gn�1} be the n-clock.

(a) The subgroups of Zn are the subgroups generated by the elements gm,

hgmi with m 2 {0, 1, . . . , n� 1}.

(b) Let m 2 {0, 1, . . . , n� 1} and let d = gcd(m,n). Then

hgmi = hgdi where d = gcd(m,n), and Card(hgdi) = n/d.

(c) Let m, k 2 {0, 1, . . . , n� 1}. Then

hgmi ✓ hgki if and only if gcd(k, n) divides gcd(m,n).

(d) Let d 2 {0, 1, . . . , n} and suppose that d divides n. Then the quotient group

Zn

hgdi ' Zn/d.
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Example. The subgroup lattice of the group Z12 is given by: FIX THIS PICTURE

The set of cosets Z12/hg3i = {H, gH, g2H}, where

H = {1, g3, g6, g9}, gH = {g, g4, g7, g10}, and g2H = {g2, g5, g8, g11}.

Proposition S.1.5. — Let C⇥ = C�{0} with the operation of multiplication of complex
numbers and let n be a positive integer. Every homomorphism from Zn to C

⇥ is of the
form

'k : Zn ! C
⇥

g 7! ⇠k
where ⇠ = e

2⇡i

n and k 2 {0, 1, . . . , n� 1}.

S.1.2.2. Presentation. —

Proposition S.1.6. — The cyclic group Zn has a presentation with generator g and
relation

gn = 1.

S.1.2.3. The action of Zn on an n-necklace. —

Proposition S.1.7. — Let S be a circular necklace with n equally spaced beads
b0, b1, . . . , bn�1, numbered counterclockwise around S.
(a) There is an action of the cyclic group Zn on the necklace S such that g acts by rotating
S counterclockwise by an angle of 2⇡/n.
(b) This action has one orbit, Znb0 = {b0, b1, . . . , bn�1} and the stabilizer of each bead is
the subgroup (1).
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S.2. The dihedral groups Dn, n > 2

Definition S.2.1. —
• The dihedral group is the set Dn = {1, x, x2, . . . , xn�1, y, xy, x2y, . . . , xn�1y} with the
operation given by

(xiyj)(xkyl) = x(i+k) mod ny(j+l) mod 2.

HW: Show that the cardinality of the dihedral group Dn is 2n.

Proposition S.2.1. — The orders of the elements in the dihedral group Dn are

o(1) = 1, o(xk) = gcd(k, n), and o(xky) = 2 for k 2 {0, 1, . . . , n� 1}.

S.2.1. Conjugacy classes, normal subgroups, and the center. —

Proposition S.2.2. —
(a) The conjugacy classes of the dihedral group D2 are the sets

C1 = {1}, Cx = {x}, Cy = {y}, and Cxy = {xy}.

(b) If n is even and n 6= 2, then the conjugacy classes of the dihedral group Dn are the sets

C = {1}, Cxn/2 = {xn/2}, Cxk = {xk, x�k}, for k 2 {0, 1, . . . , n/2},

Cy = {y, x2y, x4y, . . . , xn�2y}, Cxy = {xy, x3y, x5y, . . . , xn�1y}.

(c) If n is odd then the conjugacy classes of the dihedral group Dn are the sets

C1 = {1}, Cxk = {xk, x�k} for k 2 {0, 1, . . . , n/2}, and

Cy = {y, xy, x2y, x3y, . . . , xn�1y}.

Proposition S.2.3. — Let ha, b, · · · i denote the subgroup generated by elements a, b, . . ..
(a) The normal subgroups of the dihedral group D2 are the subgroups

hxi, hyi and hxyi.

(b) If n is even and n 6= 2 then the normal subgroups of the dihedral group Dn are the
subgroups

hxki for k 2 {0, 1, . . . , n� 1} and hx2, yi and hx2, xyi.

(c) If n is odd then the normal subgroups of the dihedral group Dn are the subgroups

hxki for k 2 {1, . . . , n� 1}.

Proposition S.2.4. —
(a) The center of the dihedral group D2 is the subgroup Z(D2) = D2.
(b) If n is even and n 6= 2 then the center of the dihedral group Dn is the subgroup
Z(Dn) = {1, xn/2}.
(c) If n is odd then the center of the dihedral group Dn is the subgroup Z(Dn) = {1}.

Notes of Arun Ram aram@unimelb.edu.au, Version: 4 April 2020



S.2. THE DIHEDRAL GROUPS Dn, n > 2 125

S.2.2. The action of Dn on an n-gon. —

Proposition S.2.5. — Let F be an n-gon with vertices v0, v1, . . . , vn�1 numbered coun-
terclockwise around F . Then there is an action of the group Dn on the n-gon F such
that

x acts by rotating the n-gon by an angle of 2⇡/n;
y acts by reflecting about the line which contains the vertex v0 and the center of F .

S.2.3. Generators and relations. —

Theorem S.2.6. — The dihedral group Dn has a presentation by generators x, y and
relations

xn = 1, y2 = 1, and yx = x�1y.
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S.3. The symmetric groups Sm

Definition S.3.1. —
• Let Z[1,m] denote the set {1, 2, . . . ,m}. A permutation of m is a bijective map

� : Z[1,m] ! Z[1,m].

• The symmetric group Sm is the set of permutations of m with the operation of
composition of functions.

HW: Show that the cardinality of the symmetric group Sm ism! = m(m�1)(m�2) · · · 2·1.

There are several convenient ways of representing a permutation �.

(1) As a two line array � =

✓
1 2 3 . . . m

�(1) �(2) �(3) . . . �(m)

◆
.

(2) As a one line array � =
�
�(1)�(2) . . . �(m)

�
.

(3) As an m⇥m matrix which has the
�
�(i), i

�th
entry equal to 1 for all i and all other

entries equal to 0.
(4) As a function diagram consisting of two rows, of m dots each, such that the ith dot

of the upper row is connected by an edge to the �(i)th dot of the lower row.
(5) In cycle notation, as a collection of sequences (i1, i2, . . . , ik) such that �(i1) = i2,

�(i2) = i3, . . . , �(ik�1) = ik, �(ik) = i1. We often leave out the cycles containing
only one element when we write � in cycle notation.

HW: Show that, in function diagram notation, the product ⌧� of two permutations ⌧
and � is given by placing the diagram of � above the diagram of ⌧ and connecting the
bottom dots of � to the top dots of ⌧ .

HW: Show that, in function diagram notation, the identity permutation is represented
by m vertical lines.

HW: Show that, in function diagram notation, ��1 is represented by the diagram of �
flipped over.

HW: Show that, in matrix notation, the product ⌧� of two permutations ⌧ and � is given
by matrix multiplication.

HW: Show that, in matrix notation, the identity permutation is the diagonal matrix with
all 1’s on the diagonal.

HW: Show that, in matrix notation, the matrix of ��1 is the transpose of the matrix of
�.

HW: Show that the matrix of a permutation is always an orthogonal matrix.

S.3.1. Sign of a permutation. —

Proposition S.3.1. — For each permutation � 2 Sm, let det(�) denote the determinant
of the matrix which represents the permutation �. The map

" : Sm ! {±1}
� 7! det(�)

is a homomorphism from the symmetric group Sm to the group µ2 = {±1}.
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Definition S.3.2. —
• The sign homomorphism of the symmetric group Sm is the homomorphism

" : Sm ! {±1}
� 7! det(�)

where det(�) denote the determinant of the matrix which represents the permutation �.
• The sign of a permutation � is the determinant "(�) of the permutation matrix repre-
senting �.
• A permutation � is even if "(�) = +1 and is odd if "(�) = �1.

S.3.2. Conjugacy Classes. —

Definition S.3.3. —
• A partition � = (�1,�2, . . . ,�k) ofm is a weakly decreasing sequence of positive integers
which sum to m, i.e.

�1 > �2 > · · · > �k > 0, and
kX

i=1

�i = m.

The elements of a partition � = (�1,�2, . . . ,�n) are the parts of the partition �. Some-
times we represent a partition � in the form � = (1m12m2 · · · ) if � has m1 1’s, m2 2’s, and
so on. Write � ` m if � is a partition of m.
• The cycles of a permutation � are the ordered sequences (i1, i2, . . . , ik) such that �(i1) =
i2, �(i2) = i3, . . . , �(ik�1) = ik, �(ik) = i1.
• The cycle type ⌧(�) of a permutation � 2 Sm is the partition of m determined by the
sizes of the cycles of �.

Example. A permutation � can have several di↵erent representations in cycle notation.
In cycle notation,

(12345)(67)(89)(10), (51234)(67)(89), (45123)(67)(89)(10),

(34512)(89)(67), and (34512)(10)(98)(67)

all represent the same permutation in S10, which, in two line notation, is given by
✓
1 2 3 4 5 6 7 8 9 10
2 3 4 5 1 7 6 9 8 10

◆

Example. If � is the permutation in S9 which is given, in cycle notation, by

� = (1362)(587)(49)

and ⇡ is the permutation in S9 which is given, in 2-line notation, by
✓
1 2 3 4 5 6 7 8 9
4 6 1 3 5 9 2 8 7

◆

then ⇡�⇡�1 is the permutation which is given, in cycle notation, by

⇡�⇡�1 = (4196)(582)(37) = (1964)(258)(37).

Theorem S.3.2. —
(a) The conjugacy classes of Sm are the sets

C� = { permutations � with cycle type �},
where � is a partition of m.
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(b) If � = (1m12m2 · · · ) then the size of the conjugacy class C� is

Card(C�) =
m!

m1!1m1m2!2m2m3!3m3 · · · .

The proof of Theorem S.3.2 will use the following lemma.

Lemma S.3.3. — Suppose � 2 Sm has cycle type � = (�1,�2, . . .) and let �� be the
permutation in Sm which is given, in cycle notation, by

�� = (1, 2, · · · ,�1)(�1 + 1,�1 + 2, . . . ,�1 + �2)(�1 + �2 + 1, · · · ) · · · .
(a) Then � is conjugate to ��.
(b) If ⌧ 2 Sm is conjugate to � then ⌧ has cycle type �.
(c) Suppose that � = (1m12m2 · · · ). Then the order of the stabilizer of the permutation ��,
under the action of Sm on itself by conjugation, is

1m1m1!2
m2m2! · · · .

Example. The sequence � = (66433322111) is a partition of 32 and can also be repre-
sented in the form � = (1322334 5062) = (1322334 62). The conjugacy class

C� in S32 has
32!

13 · 3! · 22 · 2! · 33 · 3! · 4 · 62 · 2! elements.

S.3.3. Generators and relations. —

Definition S.3.4. —
• The simple transpositions in Sm are the elements si = (i, i+ 1), 1 6 i 6 m� 1.

Proposition S.3.4. —
(a) Sm is generated by the simple transpositions si, 1 6 i 6 m� 1.
(b) The simple transpositions si, 1 6 i 6 m� 1, in Sm satisfy the relations

sisj = sjsi, if j 62 {i� 1, i+ 1},
sisi+1si = si+1sisi+1, if i 2 {1, . . . ,m� 2},

s2
i
= 1, if i 2 {1, . . . ,m� 1}.

Definition S.3.5. —
• A reduced word for � 2 Sm is an expression

� = si1 . . . sip

of � as a product of simple transpositions such that the number of factors is as small as
possible.
• The length `(�) of � is the number of factors in a reduced word for the permutation �.
• The set of inversions of � is the set

inv(�) = {(i, j) | i, j 2 {1, . . . ,m}, i < j and �(i) > �(j)}.

HW: Show that the sign "(si) of a simple transposition si in the symmetric group Sn is
-1.

Proposition S.3.5. — Let � be a permutation. Let `(�) be the length of � and let inv(�)
be the set of inversions of the permutation �. Then
(a) The sign of � is "(�) = (�1)`(�).
(b) Card(inv(�)) = `(�)
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(c) The number of crossings in the function diagram of � is `(�).

Theorem S.3.6. — The symmetric group Sm has a presentation by generators,
s1, s2, . . . , sm�1 and relations

sisj = sjsi, if j 62 {i� 1, i+ 1},
sisi+1si = si+1sisi+1, if i 2 {1, . . . ,m� 2},

s2
i
= 1, if i 2 {1, . . . ,m� 1}.
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S.4. Alternating group

Definition S.4.1. —
• The alternating group An is the subgroup of even permutations of Sn.

Proposition S.4.1. — The alternating group An is the kernel of the sign homomor-
phism of the symmetric group;

An = ker("), where
" : Sn ! {±1}

� 7! det(�).

HW: Show that An is a normal subgroup of Sn.

HW: Show that Card(An) = n!/2.

S.4.1. Conjugacy classes. — Since An is a normal subgroup of Sn, An is a union of
conjugacy classes of Sn. Let C� be a conjugacy class of Sn corresponding to a partition
� = (�1,�2, . . . ,�k). Then the following Proposition says:

(1) The conjugacy class C� is contained in An if an even number of the �i are even
numbers.

(2) If the parts �i of � are all odd and are all distinct then C� is a union of two conjugacy
classes of An and these two conjugacy classes have the same size.

(3) Otherwise C� is also a conjugacy class of An.

Proposition S.4.2. — Suppose that � 2 An. Let C� denote the conjugacy class of � in
Sn and let A� denote the conjugacy class of � in An.
(a) Then � has an even number of cycles of even length.
(b)

Card(A�) =

8
<

:

Card(C�)
2

, if all cycles � are of di↵erent odd lengths,

Card(C�), otherwise.

The proof of Proposition (1.4.2) uses the following lemma.

Lemma S.4.3. — Let � 2 An and let � = (�1,�2, . . . ,�k) be the cycle type of �. Let ��
be the permutation given, in cycle notation, by

�� = (1, 2, · · · ,�1)(�1 + 1,�1 + 2, . . . ,�1 + �2)(�1 + �2 + 1, · · · ) · · · .
Let S� denote the stabilizer of � under the action of Sn on itself by conjugation. Then,
(a) S� ✓ An if and only if S��

✓ An.

(b) S��
✓ An if and only if �� has all odd cycles of di↵erent lengths.

S.4.2. An is simple if n 6= 4. — A group is simple if it has no nontrivial normal subgroups.
The trivial normal subgroups are the whole group and the subgroup containing only the
identity element.

Theorem S.4.4. —
(a) If n 6= 4 then An is simple.
(b) The alternating group A4 has a single nontrivial proper normal subgroup given by

N = {(1234), (2143), (3412), (4321)},
where the permutations are represented in one-line notation.
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The proof of Theorem (1.4.4) uses the following lemma.

Lemma S.4.5. — Suppose N is a normal subgroup of An, n > 4, and N contains a
3-cycle. Then N = An.
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S.5. Exercises for symmetric groups

Exercise 1.14.1. Let � be a permutation in Sm. Show that the order of � is the least
common multiple of the lengths of its cycles.

Exercise 1.14.2. Show that the center Z(S2) = S2 and that if m 2 Z>2 then the center
Z(Sm) = (1).

Exercise 1.14.3.

(a) Show that the proper normal subgroups of S4 are

N = {XXXXX}
(1) and the alternating group A4.
(b) Show that if m 6= 4 then the only proper normal subgroup of Sm is the alternating

group Am.

Exercise 1.14.3. Let {"1, . . . , "m} be a basis of Cm. Let Sm act on the vectors "i by

�"i = "�(i).

Define the sets of vectors

�+ = {"i�"j | i, j 2 {1, . . . ,m} and i < j} and �� = {"j�"i | i, j 2 {1, . . . ,m} and i < j}
to be the sets of positive roots and negative roots respectively. Show that the length
`(�) of a permutation � is the same as the number of positive roots that are taken to
negative roots by the action of �.

S.6. Exercises for alternating groups

Exercise 1.14.4. Let � be an element of Am.
Show that the order of � is the least common multiple of the lengths of the cycles of �.

Exercise 1.14.5. What is the center of Am?

Exercise 1.14.6. Suppose that � 2 Am. How can one tell if � is conjugate to �� in Am?

Exercise 1.14.7. Show that the elements �µ, µ ` n, and the elements s1�µs
�1
1 , where

µ ` n is a partition with all parts odd and distinct, are a set of representatives of the
conjugacy classes of An.
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S.7. Proofs for cyclic groups

Theorem S.7.1. —
(a) Let H be a subset of the integers Z. Then H is a subgroup of Z if and only if there
exists m 2 Z>0 such that H = mZ.
(b) Let m and n be positive integers. Then mZ ✓ nZ if and only if n divides m.
(c) Let n be a positive integer. Then the quotient group Z/nZ ' Zn.

Proof. —
To show: (a) If H is a subgroup of Z then there exists m 2 Z>0 such that H = mZ.

(b) If m is a positive integer then mZ is a subgroup of Z.

Theorem S.7.2. — Let Zn be the cyclic group of order n generated by g.
(a) The subgroups of the cyclic group Zn are hgmi, 0 6 m 6 n� 1.
(b) Let m 2 {0, 1, . . . , n�1} and let d = gcd(m,n). Then hgmi = hgdi where d = gcd(m,n)
and Card(hgdi) = n/d.
(c) Let m, k 2 {0, 1, . . . , n�1}. Then hgmi ✓ hgki if and only if gcd(k, n) divides gcd(m,n).
(d) Let d 2 {0, 1, . . . , n} and suppose that d divides n. Then the quotient group

Zn/hgdi ' Zn/d.

Proposition S.7.3. — Let C⇥ = C�{0} with the operation of multiplication. If ' : Z !
C

⇥ is a group homomorphism then there exists k 2 {0, 1, . . . , n � 1} such that ' = �k

where
'k : Zn ! C

⇥

g 7! ⇠k
, where ⇠ = e

2⇡i

n .

Proposition S.7.4. — Let S be a circular necklace with n equally spaced beads
b0, b1, . . . , bn�1, numbered counterclockwise around S.
(a) There is an action of the cyclic group Zn on the necklace S such that

g acts by rotating S counterclockwise by an angle of 2⇡/n.

(b) This action has one orbit, Znb0 = {b0, b1, . . . , bn�1} and the stabilizer of each bead is
the subgroup (1).
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Proposition S.7.5. — If ' : Z ! Z is a group homomorphism then there exists m 2 Z

such that ' = 'm where
'm : Z ! Z

n 7! mn
.

S.8. Proofs for the dihedral groups Dn

Proposition S.8.1. —
(a) The conjugacy classes of D2 are

C1 = {1}, Cx = {x}, Cy = {y}, Cxy = {xy}.
(b) If n is even and n 6= 2, then the conjugacy classes of Dn are the sets

C1 = {1}, C
xn/2 = {xn/2}, Cxk = {xk, x�k}, for k 2 {0, 1, . . . , n/2},

Cy = {y, x2y, x4y, . . . , xn�2y}, Cxy = {xy, x3y, x5y, . . . , xn�1y}
(c) If n is odd then the conjugacy classes of Dn are the sets

C1 = {1} Cy = {y, xy, x2y, x3y, . . . , xn�1y} and Cxk = {xk, x�k} for k 2 {0, 1, . . . , n/2}.

Proof. — (Sketch of Proof.)
(a) The group D2 is abelian, so each element is in a conjugacy class by itself.
(b) and (c): By the multiplication rule,

x(xk)x�1 = xk,
y(xk)y = x�ky2 = x�k,

and
x(xky)x�1 = xk+2y,
y(xky) = yxk = x�ky.

Thus, (1) if xk is in a conjugacy class then x�k is also in the conjugacy class, and
(2) if xky is in a conjugacy class then xk+2y and x�ky are also in the conjugacy class.
One checks case by case that the sets given in the statement of the proposition satisfy
these two properties.
Since these sets partition the group Dn, they must be the conjugacy classes.

Proposition S.8.2. —
(a) Dn is generated by the elements x and y.
(b) The elements x and y in Dn satisfy the relations

xn = 1, y2 = 1, yx = x�1y.

Proof. — Both parts follow directly from the definition of the dihedral group Dn. THIS
IS A VERY BAD PROOF.

Theorem S.8.3. — The dihedral group Dn has a presentation by generators x and y
and relations

xn = 1, y2 = 1, yx = x�1y.

Proposition S.8.4. — Let ha, b, · · · i denote the subgroup generated by elements a, b, . . ..
(a) The normal subgroups of the dihedral group D2 are the subgroups

hxi, hyi, hxyi,
(b) If n is even and n 6= 2 then the normal subgroups of the dihedral group Dn are the
subgroups

hxki for k 2 {0, 1, . . . , n� 1} and hx2, yi, hx2, xyi.
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(c) If n is odd then the normal subgroups of the dihedral group Dn are the subgroups

hxki for k 2 {1, . . . , n� 1}.

Proof. — The subgroups given in the statement of the proposition are unions of conjugacy
classes of Dn as follows.

hxki =
[

Cxjk

hx2, yi = Cy [ hx2i
hx2, xyi = Cxy [ hx2i

Thus these subgroups are normal.
It remains to show that these are all the normal subgroups.

Proposition S.8.5. — The orders of the elements in the dihedral group Dn are

o(1) = 1, o(xk) = gcd(k, n), o(xky) = 2, 0 < k 6 n� 1.

Proof. — This follows from the definition of the multiplication in Dn. THIS IS A BAD
PROOF

Proposition S.8.6. — Let F be an n-gon with vertices vi numbered 0 to n� 1 counter-
clockwise around F . There is an action of the group Dn on the n-gon F such that

x acts by rotating the n-gon by an angle of 2⇡/n.
y acts by reflecting about the line which contains the vertex v0 and the center of F .

Proof. —

S.9. Proofs for the symmetric group

Proposition S.9.1. — For each permutation � 2 Sm, let det(�) denote the determinant
of the matrix which represents the permutation �. The map

" : Sm ! ±1
� 7! det(�)

is a homomorphism from the symmetric group Sm to the group Z2 = {±1}.

Proof. —
To show: (a) If � and ⌧ are permutation matrices then det(�⌧) = det(�) det(⌧).

(b) If � is a permutation matrix then det(�) = ±1.

(a) This follows from Proposition (??????).
(b) Any permutation matrix is an orthogonal matrix, i.e. ��t = 1.

Thus, 1 = det(��t) = det(�) det(�t) = det(�)2.
Thus det(�) = ±1.

Lemma S.9.2. — Suppose � 2 Sm has cycle type � = (�1,�2, . . .) and let �� be the
permutation in Sm which is given, in cycle notation, by

�� = (1, 2, · · · ,�1)(�1 + 1,�1 + 2, . . . ,�1 + �2)(�1 + �2 + 1, · · · ) · · · .
(a) Then � is conjugate to ��.
(b) If ⌧ 2 Sm is conjugate to � then ⌧ has cycle type �.
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(c) Suppose that � = (1m12m2 · · · ). Then the order of the stabilizer of the permutation ��,
under the action of Sm on itself by conjugation, is

1m1m1!2
m2m2! · · · .

Proof. —

(a) To show: � is conjugate to �� = (1, 2, · · · ,�1)(�1 + 1,�1 + 2, . . . ,�1 + �2)(�1 + �2 +
1, · · · ) · · · .

Suppose that, in cycle notation, � = (i1, i2, . . . , i�1)(i�1+1, . . . , i�1+�2) · · · .
Let ⇡ be the permutation given by ⇡(ij) = j.

Then ⇡�⇡�1 = ��.

(b) Suppose that ⌧ 2 Sm is conjugate to �.

Then ⌧ = ⇡�⇡�1 for some ⇡ 2 Sm.
To show: The lengths of the cycles in ⇡�⇡�1 are the same as the lengths of the
cycles in �.
Suppose that, in cycle notation, � = (i1, i2, . . . , i�1)(i�1+1, . . . , i�1+�2) · · · .
Then ⇡�⇡�1(⇡(ij)) = ⇡(�(ij)) = ⇡(ij+1).
Thus, in cycle notation, ⇡�⇡�1 = (⇡(i1), ⇡(i2), · · · , ⇡(i�1))(⇡(i�1+1), . . . , ⇡(i�1+�2)) · · · .
So, the lengths of the cycles in ⇡�⇡�1 are the same as the lengths of the cycles in
�.

So, ⌧ has cycle type �.

(c) Suppose that ⇡ 2 Sm is in the stabilizer of ��.
Then ⇡��⇡�1 = ��.
In cycle notation, ⇡��⇡�1 = (⇡(1), ⇡(2), . . . , ⇡(�1))(⇡(�1 + 1), . . . , ⇡(�1 + �2)) · · · .
Since ⇡��⇡�1 = ��, it follows that each of the sequences (⇡(�j+1), . . . , ⇡(�j+�j+1)) must
be a

cyclic rearrangement of some cycle of ��.

This means that ⇡ must be a permutation that

(1) permutes cycles of �� of the same length and/or
(2) cyclically rearranges the elements of the cycles of ��.

Note that,

(1) Each cycle of length k in �� can be cyclically rearranged in k ways. Thus, there are
a total of kmk ways of cyclically rearranging the elements of the mk cycles of length
k in ��.

(2) The mk cycles of length k in �� can be permuted in mk! di↵erent ways.

Thus, there are a total of 1m1m1!2m2m2! · · · permutations ⇡ which stabilize �� under the
action of conjugation.

Proposition S.9.3. —
(a) The conjugacy classes of Sm are the sets

C� = { permutations � with cycle type �},
where � is a partition of m.
(b) If � = (1m12m2 · · · ) then the size of the conjugacy class C� is

|C�| =
m!

m1!1m1m2!2m2m3!3m3 · · · .

Proof. —
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(a) To show: (aa) If � ` m then C� is a conjugacy class of Sm.
(ab) Every conjugacy class is equal to C� for some � ` m.

(aa) Let � be a partition of m.
Let O��

denote the conjugacy class of ��.
To show: O� = C�.
To show: (aaa) C� ✓ O��

.
(aab) C�� ✓ C�.

(aaa) Suppose that � 2 C�.
Then � has cycle type �.
Thus, by Lemma (?????), � is conjugate to ��.
So, � 2 O��

.
Thus, C� ✓ O��

.
(aab) Suppose that � 2 O��

.
Then, � is conjugate to ��.
Thus, by Lemma (????), � has cycle type �.
So, � 2 C�.
So O��

✓ C�.
So C� = O��

.
So C� is a conjugacy class of Sm.

(ab) Let � 2 Sm and let O� be the conjugacy class of �.
Suppose that � has cycle type �.
Then, by Lemma (?????), � is conjugate to ��.
Thus, by Proposition (?????), O� = O��

.
So, by part (a), O� = O��

= C�.
So every conjugacy class is equal to C� for some � ` m. So the sets C�, � ` m, are
the conjugacy classes of Sm.

(b) Let � = (1m12m2 · · · ) be a partition of m.
By, Lemma (???), the stabilizer of the permutation ��, has order 1m1m1!2m2m2! · · · .
Thus, by Proposition (???), the order of the conjugacy class C� is

Card(C�) =
Card(Sm)

1m1m1!2m2m2! · · ·
=

m!

1m1m1!2m2m2! · · ·
.

Proposition S.9.4. —
(a) Sm is generated by the simple transpositions si, 1 6 i 6 m� 1.
(b) The simple transpositions {si | i 2 {1, . . . ,m� 1}} in Sm satisfy the relations

sisj = sjsi, if j 62 {i1, i+ 1},
sisi+1si = si+1sisi+1, if i 2 {1, . . . ,m� 2},

s2
i
= 1, for i 2 {1, . . . ,m� 1}.

Proof. — (a) To show: Every permutation � can be written as a product of simple
tranpositions.
This is most easily seen by “stretching out” the function diagram of �.

PICTUREstretchout.ps

We must give some argument to show that this can always be done, for an arbitrary
permutation �.

PICTUREsigma.ps
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The set of inversions of � is the set

inv(�) = {(i, j) | i, j 2 {1, . . . ,m} and i < j and �(i) > �(j)}.
Let ki be the number of inversions of � that have first coordinate i.
Then define

�(i) =

(
sisi+1 . . . si+ki�1, if ki > 1,

1, if ki = 0.

Then � = �(m� 1)�(m� 2) · · · �(1).
P ICTUREgammadec.ps

Thus � can be written as a product of simple transpositions.
(b) To show: (ba) If i, j 2 {1, . . . ,m� 1} and j 62 {i� 1, i+ 1} then sisj = sjsi,

(bb) If i 2 {1, . . . ,m� 2} then sisi+1si = si+1sisi+1.
(bc) If i 2 {1, . . . ,m� 1} then s2

i
= 1, 1 6 i 6 m� 1.

(ba)
PICTUREsisjsjsi

(bb)
PICTUREsisip1

(bc)
PICTUREsi2

S.10. Proofs for the alternating group

Proposition S.10.1. — Suppose that � 2 Am. Let C� denote the conjugacy class of �
in Sm and let A� denote the conjugacy class of � in Am.
(a) Then � has an even number of cycles of even length.
(b)

Card(A�) =

8
>><

>>:

Card(C�)
2

, if all cycles � are of di↵erent odd lengths,

Card(C�), otherwise.

Proof. —

(a) Suppose that � has cycle type � = (�1,�2, . . . ,�k).
To show: An even number of the �j, 1 6 j 6 k, are even.
Let �� be the permutation given, in cycle notation, by

�� = (1, 2, · · · ,�1)(�1 + 1,�1 + 2, . . . ,�1 + �2)(�1 + �2 + 1, · · · ) · · · .
Since Am is a normal subgroup of Sm and � 2 Am it follows that C� = C�� ✓ Am.

So �� 2 Am.
So the length `(��) of �� is even.
So `(��) =

P
k

i=1(�i � 1) is even.
So there are an even number of 1 6 j 6 k such that �j � 1 is odd.
So there are an even number of 1 6 j 6 k such that �j is even.

So � has an even number of cycles of even length.
(b) Let S� be the stabilizer of � under the action of Sm on itself by conjugation.

Let A� be the stabilizer of � under the action of Am on itself by conjugation.
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Then, by Proposition (???),

1
2Card(S�)Card(C�) =

Card(Sm)

2
= Card(Am) = Card(A�)Card(A�).

So,

Card(A�) =

8
<

:
Card(C�), if Card(A�) 6= Card(S�),
Card(C�)

2
, if Card(A�) = Card(S�).

Since A� ✓ S�,

Card(A�) =

8
<

:
Card(C�), if S� ✓ A�,

Card(
C�)
2

, if S� 6✓ A�.

So,

Card(A�) =

8
<

:
Card(C�), if S� ✓ Am,
Card(C�)

2
, if S� 6✓ Am.

Then, by Lemma (???),

Card(A�) =

8
<

:
Card(C�), if S��

✓ Am,
Card(C�)

2
,, if S��

6✓ Am.

By Lemma (???),

Card(A�) =

8
>><

>>:

Card(C�)
2

, if all cycles � are of di↵erent odd lengths,

Card(C�), otherwise.

Lemma S.10.2. — Let � 2 Am and let � = (�1,�2, . . . ,�k) be the cycle type of �. Let
�� be the permutation given, in cycle notation, by

�� = (1, 2, · · · ,�1)(�1 + 1,�1 + 2, . . . ,�1 + �2)(�1 + �2 + 1, · · · ) · · · .
Let S� denote the stabilizer of � under the action of Sm on itself by conjugation. Then,
(a) S� ✓ Am if and only if S��

✓ Am.
(b) S��

✓ Am if and only if �� has all odd cycles of di↵erent lengths.

Proof. —

(a) To show: S� ✓ Am if and only if S��
✓ Am.

To show: (aa) If S� ✓ Am then S��
✓ Am.

(ab) If S��
✓ Am then S� ✓ Am.

Then, by Proposition (????), there exists ⇡ 2 Sm such that ⇡�⇡�1 = ��.
Thus, S��

= ⇡S�⇡�1.
(aa) Assume S� ✓ Am.

Let ⌧ 2 S��
.

Then ⇡�1⌧⇡ 2 S�.
So ⇡�1⌧⇡ 2 Am.
So 1 = "(⇡�1⌧⇡).
Since " is a homomorphism, "(⌧) = "(⇡)�1"(⌧)"(⇡) = "(⇡�1⌧⇡) = 1.
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So ⌧ 2 Am.
So S��

✓ Am.
(ab) Assume S��

✓ Am.
Let ⌧ 2 S�.
Then ⇡⌧⇡�1 2 S��

.
So ⇡⌧⇡�1 2 Am.
So 1 = "(⇡⌧⇡�1).
Since " is a homomorphism, "(⌧) = "(⇡)"(⌧)"(⇡)�1 = "(⇡⌧⇡�1) = 1.
So ⌧ 2 Am.

So S� ✓ Am.
So S� ✓ Am if and only if S��

✓ Am.
(b) To show: S��

✓ Am if and only if �� has all odd cycles of di↵erent lengths.
To show: (ba) If S��

✓ Am then �� has all odd cycles of di↵erent lengths. item[]
(bb) If �� has all odd cycles of di↵erent lengths then S��

✓ Am.
(ba) Proof by contradiction.

Assume � does not have all odd parts of di↵erent lengths.
To show: S��

6✓ Am.
Case 1: Assume �� has an even cycle, say (k + 1, . . . , k + 2n).
Let ⇡ be the permutation which cyclically permutes this cycle, ⇡ = (k +
1, . . . , k + 2n).
Then ⇡ 2 S��

.
But "(⇡) = (�1)2n�1 = �1.
So ⇡ 62 Am.
So S��

6✓ Am.
Case 2: Assume �� has two cycles of the same odd length, say (k+1, . . . , k+n)
and (k + n+ 1, . . . , k + n+ n).
Let ⇡ be the permutation which switches these two cycles, ⇡ = (k+1, k+1+
n)(k + 2, k + 2 + n) · · · (k + n, k + n+ n).
Then ⇡ 2 S��

.
But "(⇡) = (�1)n

2
= �1, since n is odd.

So ⇡ 62 Am.
So S��

6✓ Am.

(bb) Assume �� has all di↵erent odd cycles.
Suppose that ⌧ 2 S��

.
This means that ⌧ must be a permutation that
(1) permutes cycles of �� of the same length and/or
(2) cyclically rearranges the elements of the cycles of ��.
Since all cycles of �� are di↵erent lengths, ⌧ cyclically permutes the elements
of the cycles of ��.
Define permutations

c1 = (1, 2, . . . ,�1), c2 = (�1 + 1,�1 + 2, . . . ,�1 + �2), etc.

Then ⌧ = cn1
1 cn2

2 · · · cnk

k
for some positive integers n1, n2, . . . , nk.

Then "(cj) = (�1)�j�1 = 1, since �j is odd.
So "(tau) = "(c1)n1"(c2)n2 · · · "(ck)nk = 1.
So ⌧ 2 Am.

So S��
✓ Am.
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Theorem S.10.3. —
(a) If m 6= 4 then Am is simple.
(b) The alternating group A4 has a single nontrivial proper normal subgroup given by

{(1234), (2143), (3412), (4321)}

Proof. —

(a) Case a: n = 1, 2, 3.
The groups A1 = {1}, A2 = {1} A3 = {(123), (213), (312)} have no nontrivial
proper subgroups.
So A1, A2 and A3 have no nontrivial proper normal subgroups.

(b) Case b: n = 4.
The conjugacy classes of A4 are

{1}, {(123), (134), (243), (142)}, {(132)(124), (234), (143)}, {(12)(34), (13)(24), (14)(23)}.
Let N be a normal subgroup of A4.
(ba) Case ba: ⇡ = (123) 2 N .

Then ⇡�1 = (132) and (123)(124) = (12)(34) are in N .
So N contains all the conjugacy classes.
So N = An.

(bb) Case bb: ⇡ = (132) 2 N .
Then ⇡�1 = (123) and (123)(124) = (12)(34) are in N .
So N contains all the conjugacy classes.
So N = An.
Thus, the only possible union of conjugacy classes which could be a normal
subgroup is

N = {1, (12)(34), (13)(24), (14)(23)}.
It is easy to check that this is a subgroup of A4.

(c) Case c: n > 5.
Let N be a normal subgroup of An such that N 6= (1).
To show: N = An.
Let � 2 N and suppose that sigma has cycle type �.
Let ��

SOMEHTING

(ca) Case ca: � has a cycle (i1i2 · · · ir) of length r > 3.
Then ��1 2 N and (i2i3i4)�(i4i3i2) 2 N .
So ��1((i2i3i4)�(i4i3i2)) = (��1(i1i2i3)�)(i4i3i2) = (i1i2i3)(i4i3i2) = (i1i2i4) 2
N .
Thus, by Lemma (???), N = An.

(cb) Case cb: � does not have all odd cycles of di↵erent lengths and � has a cycle
of length > 2.
Then, by Propositions (???) and (???), A� = C� = C�� .
Since N is normal, C�� = A� ✓ N .
So �� 2 N and s1��s1 2 N .
Since N is a subgroup ��1

�
2 N .

So ��1
�

(s1��s1) = (��1
�

s1��)s1 = s2s1 = (123) 2 N .
Thus, by Lemma (), N = An.

(cc) Case cc: � has all cycles of length 2 or 1.
Since � 2 An, � has at least two cycles of length 2.
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Thus, by Proposition (), A� = C� = C�� .
Since N is normal, C�� = A� ✓ N .
So �� 2 N and s2��s2 2 N .
Since N is a subgroup ��1

�
2 N .

So ��1
�

s2��s2 = (14)(23) 2 N .
So ⇡1 = (12)(34)(5) and ⇡2 = (12)(3)(45) 2 N .
So ⇡1⇡2 = (345) 2 N .

Thus, by Lemma (), N = An.

Lemma S.10.4. — Suppose N is a normal subgroup of An, n > 4, and N contains a
3-cycle. Then N = An.

Proof. — To show: An ✓ N .
Let ⇡ = (i1, i2, i3) be a 3-cycle in N .
Since n > 4, ⇡ has more than one 1-cycle and it follows from Proposition (), that
A⇡ = C⇡.
Thus, since N is normal, C⇡ ✓ N .
So (123) and (143) are elements of N .
Then � = (143)(123) = (12)(34) = s1s3 2 N .
Since � has an even cycle, it follows from Proposition (), that A� = C� ✓ N .
Then

sisj 2
(
C⇡, if j = i+ 1,

C�, otherwise.

So sisj 2 N for all i, j.
By, Proposition () and Proposition (), the elements sisj generate An.
So An ✓ N .


