1.3. Sets

A set is a collection of objects which are called *elements*. Write

 $s \in S$ if s is an element of the set S.

• The *empty set* \emptyset is the set with no elements.

• A subset T of a set S is a set T such that if $t \in T$ then $t \in S$.

Write

 $T \subseteq S$ if T is a subset of S, and

T = S if the set T is equal to the set S.

Let S and T be sets.

• The union of S and T is the set $S \cup T$ of all u such that $u \in S$ or $u \in T$,

 $S \cup T = \{ u \mid u \in S \text{ or } u \in T \}.$

• The intersection of S and T is the set $S \cup T$ of all u such that $u \in S$ and $u \in T$, $S \cap T = \{u \mid u \in S \text{ and } u \in T\}$

$$S \cap I = \{u \mid u \in S \text{ and } u \in I\}.$$

• The product S and T is the set $S \times T$ of all ordered pairs (s, t) where $s \in S$ and $t \in T$,

 $S \times T = \{(s,t) \mid s \in S \text{ and } t \in T\}.$

The sets S and T are disjoint if $S \cap T = \emptyset$. The set S is a proper subset of T if $S \subseteq T$ and $S \neq T$.