Sample Exam questions 3

MAST90097 Algebraic Geometry Semester II 2018 Lecturer: Arun Ram

August 13, 2018

- (1) (Harder Chapter 1 Example 1)
 - (a) Carefully define a category.
 - (b) Carefully define the category **Ens** of sets.
 - (c) Prove that **Ens** is a category.
- (2) (Harder Chapter 1 Example 2)
 - (a) Carefully define a category.
 - (b) Carefully define a *functor*.
 - (c) Let \mathbb{F} be a field. Carefully define the category \mathbf{Vect}_k of vector spaces over k.
 - (d) Prove that \mathbf{Vect}_k is a category.
 - (e) Define the *forgetful functor* from Vect_k to Ens.
- (3) (Harder Chapter 1 Example 3)
 - (a) Carefully define the category **Groups** of groups.
 - (b) Prove that **Groups** is a category.
 - (c) Let A be a ring. Carefully define the category \mathbf{Mod}_A of A-modules.
 - (d) Prove that \mathbf{Mod}_A is a category.
 - (e) Explain why the terms abelian group and vector space should be deprecated.
- (4) (Harder Chapter 1 Example 4)
 - (a) Carefully define the category **Top** of topological spaces.

- (b) Prove that **Top** is a category.
- (5) (Harder Chapter 1 Example 5)
 - (a) Explain how a poset (\mathcal{I}, \leq) can be viewed as a category.
 - (b) Explain how a group G can be viewed as a category.
 - (c) Explain how a topological space (X, \mathcal{T}) can be viewed as a category.
- (6) (a) Carefully define the category **Metric** of metric spaces.
 - (b) Prove that **Metric** is a category.
- (7) (Harder Chapter 1 Example 6)
 - (a) Carefully define a functor of "taking the dual" from \mathbf{Vect}_k to \mathbf{Vect}_k .
 - (b) Prove that "taking the dual" is a contravariant functor.
- (8) (Harder Chapter 1 Example 7)
 - (a) Prove that $\mathbb{R}^m \not\cong \mathbb{R}^n$ if $m \neq n$.
 - (b) Describe the homology groups $H_i(\mathbb{R}^m, \mathbb{Z})$.
- (9) (Harder Chapter 1 Example 8)
 - (a) Define *product* in the categorical sense.
 - (b) Define the product $X \times Y$ of two sets X and Y.
 - (c) Prove that the product $X \times Y$ of two sets X and Y is a product in the categorical sense.
- (10) (Harder Chapter 1 Example 9)
 - (a) Carefully define the ring $\widehat{\mathbb{Z}}$.
 - (b) What is 1 + 1 + 1 in the ring $\widehat{\mathbb{Z}}$? (with proof, of course).
 - (c) What is $\frac{1}{3}$ in the ring $\widehat{\mathbb{Z}}$? (with proof, of course).
 - (d) Carefully define the ring \mathbb{Z}_p .

- (e) Carefully define the topology on \mathbb{Z}_p .
- (f) Show that \mathbb{Z} is a dense subring of \mathbb{Z}_p .
- (e) Prove that $\widehat{\mathbb{Z}}$ is a product of \mathbb{Z}_p .
- (f) Give an example of a zero divisor in \widehat{Z} (with proof, of course).
- (11) (Harder Chapter 1 Example 10)
 - (a) Prove that products exists in the category of sets.
 - (b) Carefully define the category of fields.
 - (c) Give an example (with proof, of course) of two fields F and K such that the product F × K does not exist (in the category of fields).
- (12) (Harder Chapter 1 Example 11)
 - (a) Carefully define a field.
 - (b) Carefully define the algebraic closure $\overline{\mathbb{F}}$ of a field \mathbb{F} .
 - (c) Carefully define the Galois group $Gal(\mathbb{K}/\mathbb{F})$.
 - (d) Prove that the Galois group $Gal(\overline{\mathbb{F}}/\mathbb{F})$ is a projective limit of finite groups.
- (13) (Harder Chapter 1 Example 12)
 - (a) Carefully define the *Krull topology* on a product of finite sets.
 - (b) Determine when the Krull topology on a product of finite sets coincides with the product topology (coming from the discrete topology on each factor).
 - (c) Carefully define a *profinite set*.
 - (d) Carefully define a *profinite group*.
 - (e) Carefully define a *profinite ring*.
 - (e) Prove that $\widehat{\mathbb{Z}}$ is a profinite ring.
 - (e) Prove that $Gal(\overline{\mathbb{F}}/\mathbb{F})$ is a profinite group.
- (14) (Harder Chapter 1 Exercise 1)
 - (a) Carefully define disjoint union in the category theoretic sense.
 - (b) Are there disjoint unions in the category \mathbf{Vect}_k ? If so, construct the disjoint union as a vector space. If not, prove that it does not exist.